Chemical Research in Toxicology
Article
(21) Inestrosa, N. C., Alvarez, A., and Calderon, F. (1996)
Acetylcholinesterase is a senile plaque component that promotes
assembly of amyloid β-peptide into Alzheimer’s filaments. Mol.
Psychiatry 1, 359−361.
5-sulfophenyl)-2H-tetrazolyl-5-carboxyanilide; ROS, reactive
oxygen species; Olig/Rot, oligomycin-A/rotenone
REFERENCES
■
(22) Fang, J. H., Wang, X. H., Xu, Z. R., and Jiang, F. G. (2010)
Neuroprotective effects of bis(7)-tacrine against glutamate-induced
retinal ganglion cells damage. BMC Neurosci. 11, 31.
(1) Burns, A., and Iliffe, S. (2009) Alzheimer’s disease. Br. Med. J. 338,
b158.
(2) Ballard, C., Gauthier, S., Corbett, A., Brayne, C., Aarsland, D., and
Jones, E. (2011) Alzheimer’s disease. Lancet 377, 1019−1031.
(3) Toledano-Gasca, A. (1988) Hypotheses concerning the aetiology
of Alzheimer’s disease. Pharmacopsychiatry 21 (Suppl. 1), 17−25.
(4) Scarpini, E., Scheltens, P., and Feldman, H. (2003) Treatment of
Alzheimer’s disease: Current status and new perspectives. Lancet Neurol.
2, 539−547.
(5) Perry, E. K., Tomlinson, B. E., Blessed, G., Bergmann, K., Gibson,
P. H., and Perry, R. H. (1978) Correlation of cholinergic abnormalities
with senile plaques and mental test scores in senile dementia. Br. Med. J.
2, 1457−1459.
(6) Gura, T. (2008) Hope in Alzheimer’s fight emerges from
unexpected places. Nat. Med. 14, 894.
(7) Terry, A. V., Jr., and Buccafusco, J. J. (2003) The cholinergic
hypothesis of age and Alzheimer’s disease-related cognitive deficits:
Recent challenges and their implications for novel drug development. J.
Pharmacol. Exp. Ther. 306, 821−827.
(8) Romero, A., Cacabelos, R., Oset-Gasque, M. J., Samadi, A., and
Marco-Contelles, J. (2013) Novel tacrine-related drugs as potential
candidates for the treatment of Alzheimer’s disease. Bioorg. Med. Chem.
Lett. 23, 1916−1922.
(9) Youdim, M. B., and Buccafusco, J. J. (2005) Multi-functional drugs
for various CNS targets in the treatment of neurodegenerative disorders.
Trends Pharmacol. Sci. 26, 27−35.
(10) Bolognesi, M. L., Cavalli, A., Valgimigli, L., Bartolini, M., Rosini,
M., Andrisano, V., Recanatini, M., and Melchiorre, C. (2007) Multi-
target-directed drug design strategy: From a dual binding site
acetylcholinesterase inhibitor to a trifunctional compound against
Alzheimer’s disease. J. Med. Chem. 50, 6446−6449.
(23) Minarini, A., Milelli, A., Tumiatti, V., Rosini, M., Simoni, E.,
Bolognesi, M. L., Andrisano, V., Bartolini, M., Motori, E., Angeloni, C.,
and Hrelia, S. (2012) Cystamine-tacrine dimer: A new multi-target-
directed ligand as potential therapeutic agent for Alzheimer’s disease
treatment. Neuropharmacology 62, 997−1003.
(24) Fang, L., Kraus, B., Lehmann, J., Heilmann, J., Zhang, Y., and
Decker, M. (2008) Design and synthesis of tacrine-ferulic acid hybrids as
multi-potent anti-Alzheimer drug candidates. Bioorg. Med. Chem. Lett.
18, 2905−2909.
(25) Fang, L., Appenroth, D., Decker, M., Kiehntopf, M., Roegler, C.,
Deufel, T., Fleck, C., Peng, S., Zhang, Y., and Lehmann, J. (2008)
Synthesis and biological evaluation of NO-donor-tacrine hybrids as
hepatoprotective anti-Alzheimer drug candidates. J. Med. Chem. 51,
713−716.
(26) Chen, Y., Sun, J., Fang, L., Liu, M., Peng, S., Liao, H., Lehmann, J.,
and Zhang, Y. (2012) Tacrine-ferulic acid-nitric oxide (NO) donor
trihybrids as potent, multifunctional acetyl- and butyrylcholinesterase
inhibitors. J. Med. Chem. 55, 4309−4321.
(27) Chen, X., Zenger, K., Lupp, A., Kling, B., Heilmann, J., Fleck, C.,
Kraus, B., and Decker, M. (2012) Tacrine-silibinin codrug shows neuro-
and hepatoprotective effects in vitro and pro-cognitive and
hepatoprotective effects in vivo. J. Med. Chem. 55, 5231−5242.
(28) Patocka, J. (1986) Anticholinesterase activity of 9-amino-7-
methoxy-1,2,3,4-tetrahydroacridine and some derivatives and analogues.
Sb. Ved. Pr. Lek. Fak. Univ. Karlovy Hradec Kralove 102, 123−140.
(29) Maalej, E., Chabchoub, F., Samadi, A., de los Rios, C., Perona, A.,
Morreale, A., and Marco-Contelles, J. (2011) Synthesis, biological
assessment and molecular modeling of 14-aryl-10,11,12,14-tetrahydro-
9H-benzo[5,6]chromeno[2,3-b]quinolin-13-amines. Bioorg. Med.
Chem. Lett. 21, 2384−2388.
(30) Denizot, F., and Lang, R. (1986) Rapid colorimetric assay for cell
growth and survival. Modifications to the tetrazolium dye procedure
giving improved sensitivity and reliability. J. Immunol. Methods 89, 271−
277.
(31) Wilkening, S., Stahl, F., and Bader, A. (2003) Comparison of
primary human hepatocytes and hepatoma cell line Hepg2 with regard
to their biotransformation properties. Drug Metab. Dispos. 31, 1035−
1042.
(11) Knapp, M. J., Knopman, D. S., Solomon, P. R., Pendlebury, W. W.,
Davis, C. S., and Gracon, S. I. (1994) A 30-week randomized controlled
trial of high-dose tacrine in patients with Alzheimer’s disease. The
Tacrine Study Group. J. Am. Med. Assoc. 271, 985−991.
(12) Watkins, P. B., Zimmerman, H. J., Knapp, M. J., Gracon, S. I., and
Lewis, K. W. (1994) Hepatotoxic effects of tacrine administration in
patients with Alzheimer’s disease. J. Am. Med. Assoc. 271, 992−998.
(13) Hardy, J. (2009) The amyloid hypothesis for Alzheimer’s disease:
A critical reappraisal. J. Neurochem. 110, 1129−1134.
(14) Gella, A., and Durany, N. (2009) Oxidative stress in Alzheimer
disease. Cell. Adhes. Migr. 3, 88−93.
(32) Osseni, R. A., Debbasch, C., Christen, M. O., Rat, P., and Warnet,
J. M. (1999) Tacrine-induced reactive oxygen species in a human liver
cell line: The role of anethole dithiolethione as a scavenger. Toxicol. In
Vitro 13, 683−688.
́
(15) Leon, R., and Marco-Contelles, J. (2011) A step further towards
multitarget drugs for Alzheimer and neuronal vascular diseases:
Targeting the cholinergic system, amyloid-β aggregation and Ca2+
dyshomeostasis. Curr. Med. Chem. 18, 552−576.
(33) Ellman, G. L., Courtney, K. D., Andres, V., Jr., and Feather-Stone,
R. M. (1961) A new and rapid colorimetric determination of
acetylcholinesterase activity. Biochem. Pharmacol. 7, 88−95.
́
(16) Leon, R., Garcia, A. G., and Marco-Contelles, J. (2013) Recent
advances in the multitarget-directed ligands approach for the treatment
of Alzheimer’s disease. Med. Res. Rev. 33, 139−189.
(17) Tumiatti, V., Minarini, A., Bolognesi, M. L., Milelli, A., Rosini, M.,
and Melchiorre, C. (2010) Tacrine derivatives and Alzheimer’s disease.
Curr. Med. Chem. 17, 1825−1838.
(18) Lange, J. H., Coolen, H. K., van der Neut, M. A., Borst, A. J., Stork,
B., Verveer, P. C., and Kruse, C. G. (2010) Design, synthesis, biological
properties, and molecular modeling investigations of novel tacrine
derivatives with a combination of acetylcholinesterase inhibition and
cannabinoid CB1 receptor antagonism. J. Med. Chem. 53, 1338−1346.
(19) Fang, L., Jumpertz, S., Zhang, Y., Appenroth, D., Fleck, C., Mohr,
K., Trankle, C., and Decker, M. (2010) Hybrid molecules from
xanomeline and tacrine: Enhanced tacrine actions on cholinesterases
and muscarinic M1 receptors. J. Med. Chem. 53, 2094−2103.
(20) Pang, Y. P., Quiram, P., Jelacic, T., Hong, F., and Brimijoin, S.
(1996) Highly potent, selective, and low cost bis-tetrahydroaminacrine
inhibitors of acetylcholinesterase. Steps toward novel drugs for treating
Alzheimer’s disease. J. Biol. Chem. 271, 23646−23649.
(34) Maalej, E., Chabchoub, F., Oset-Gasque, M. J., Esquivias-Per
́
ez,
M., Gonzalez, M. P., Monjas, L., Perez, C., de los Rios, C., Rodriguez-
́
́
Franco, M. I., Iriepa, I., Moraleda, I., Chioua, M., Romero, A., Marco-
Contelles, J., and Samadi, A. (2012) Synthesis, biological assessment,
and molecular modeling of racemic 7-aryl-9,10,11,12-tetrahydro-7H-
benzo[7,8]chromeno[2,3-b]quinolin-8-amines as potential drugs for
the treatment of Alzheimer’s disease. Eur. J. Med. Chem. 54, 750−763.
992
dx.doi.org/10.1021/tx400138s | Chem. Res. Toxicol. 2013, 26, 986−992