G Model
CCLET 3700 1–5
Y. Wang et al. / Chinese Chemical Letters xxx (2016) xxx–xxx
5
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
[18] L. Ackermann, E. Diers, A. Manvar, Ruthenium-catalyzed C-H bond arylations of
arenes bearing removable directing groups via six-membered ruthenacycles, Org.
Lett. 14 (2012) 1154–1157.
[19] W. Liu, L. Ackermann, Ortho- and para-selective ruthenium-catalyzed C(sp2)-H
oxygenations of phenol derivatives, Org. Lett. 15 (2013) 3484–3486.
[20] W. Ma, K. Graczyk, L. Ackermann, Ruthenium-catalyzed alkyne annulations with
substituted 1H-pyrazoles by C-H/N-H bond functionalizations, Org. Lett. 14
(2012) 6318–6321.
[21] M. Schinkel, L. Wang, K. Bielefeld, L. Ackermann, Ruthenium(II)-catalyzed C(sp3)-
H a-alkylation of pyrrolidines, Org. Lett. 16 (2014) 1876–1879.
[22] C.L. Ciana, R.J. Phipps, J.R. Brandt, F.M. Meyer, M.J. Gaunt, A highly para-selective
copper(II)-catalyzed direct arylation of aniline and phenol derivatives, Angew.
Chem. Int. Ed. 50 50 (2011) 458–462.
[23] B. Haffemayer, M. Gulias, M.J. Gaunt, Amine directed Pd(ii)-catalyzed C-H bond
functionalization under ambient conditions, Chem. Sci. 2 (2011) 312–315.
[24] S.R. Neufeldt, M.S. Sanford, Asymmetric chiral ligand-directed alkene dioxygena-
tion, Org. Lett. 15 (2012) 46–49.
[25] G. Yang, P. Lindovska, D. Zhu, et al., Pd(II)-catalyzed meta-C–H Olefination,
arylation, and acetoxylation of indolines using a U-shaped template, J. Am. Chem.
Soc. 136 (2014) 10807–10813.
[26] M. Shang, H.L. Wang, S.Z. Sun, H.X. Dai, J.Q. Yu, Cu(II)-mediated ortho C–H
alkynylation of (hetero)arenes with terminal alkynes, J. Am. Chem. Soc. 136
(2014) 11590–11593.
[27] R.Y. Tang, G. Li, J.Q. Yu, Conformation-induced remote meta-C-H activation of
amines, Nature 507 (2014) 215–220.
[28] S.L. ChanKelvin, M. Wasa, L. Chu, et al., Ligand-enabled cross-coupling of C(sp3)–H
bonds with arylboron reagents via Pd(II)/Pd(0) catalysis, Nat. Chem. 6 (2014)
146–150.
[29] G. Zhang, L. Yang, Y. Wang, Y. Xie, H. Huang, An Efficient Rh/O2 catalytic system for
oxidative C–H activation/annulation: evidence for Rh(I) to Rh(III) oxidation by
molecular oxygen, J. Am. Chem. Soc. 135 (2013) 8850–8853.
[30] C. Wang, Y. Huang, Traceless directing strategy: efficient synthesis of N-alkyl
indoles via redox-neutral C–H activation, Org. Lett. 15 (2013) 5294–5297.
[31] W.W. Chan, S.F. Lo, Z. Zhou, W.Y. Yu, Rh-catalyzed intermolecular carbenoid
functionalization of aromatic C–H bonds by a-diazomalonates, J. Am. Chem. Soc.
134 (2012) 13565–13568.
[32] B. Liu, C. Song, C. Sun, S. Zhou, J. Zhu, Rhodium(III)-catalyzed indole synthesis
using N–N bond as an internal oxidant, J. Am. Chem. Soc. 135 (2013) 16625–
16631.
[33] X.C. Huang, X.H. Yang, R.J. Song, J.H. Li, Rhodium-catalyzed synthesis of isoqui-
nolines and indenes from benzylidenehydrazones and internal alkynes, J. Org.
Chem. 79 (2014) 1025–1031.
[34] N.J. Wang, S.T. Mei, L. Shuai, Y. Yuan, Y. Wei, Aerobic oxidative C–H olefination of
cyclic N-sulfonyl ketimines catalyzed by a rhodium catalyst, Org. Lett. 16 (2014)
3040–3043.
[35] H. Sun, C. Wang, Y.F. Yang, et al., Synthesis of indolo[2,1-a]isoquinolines via a
triazene-directed C–H annulation cascade, J. Org. Chem. 79 (2014) 11863–11872.
[36] W. Han, G. Zhang, G. Li, H. Huang, Rh-catalyzed sequential oxidative C–H and N–N
bond activation: conversion of azines into isoquinolines with air at room tem-
perature, Org. Lett. 16 (2014) 3532–3535.
[37] S.C. Chuang, P. Gandeepan, C.H. Cheng, Synthesis of isoquinolines via Rh(III)-
catalyzed C–H activation using hydrazone as a New oxidizing directing group,
Org. Lett. 15 (2013) 5750–5753.
[38] G. Li, Z. Ding, B. Xu, Rhodium-catalyzed oxidative annulation of sulfonylhydra-
zones with alkenes, Org. Lett. 14 (2012) 5338–5341.
[45] M. Watanabe, K.Y. Chen, Y.J. Chang, T.J. Chow, Acenes generated from precursors 271
and their semiconducting properties, Acc. Chem. Res. 46 (2013) 1606–1615.
272
[46] C. Kitamura, T. Ohara, A. Yoneda, et al., Synthesis and solid-state optical properties 273
of 2,3-dialkyl- and 2,3,8,9-tetraalkyltetracenes, Chem. Lett. 40 (2011) 58–59.
[47] A.S. Paraskar, A.R. Reddy, A. Patra, et al., Rubrenes: planar and twisted, Chem. Eur. 275
J. 14 (2008) 10639–10647.
[48] X. Qiao, M.A. Padula, D.M. Ho, et al., Octaphenylnaphthalene and decaphenylan- 277
thracene, J. Am. Chem. Soc. 118 (1996) 741–745.
[49] T. Takahashi, S. Li, W. Huang, et al., Homologation method for preparation of 279
substituted pentacenes and naphthacenes, J. Org. Chem. 71 (2006) 7967–7977.
274
276
278
280
[50] W. Huang, X. Zhou, K.I. Kanno, T. Takahashi, Pd-Catalyzed reactions of o-diio- 281
doarenes with alkynes for aromatic ring extension, Org. Lett. 6 (2004) 2429–2431. 282
[51] H. Pellissier, M. Santelli, The use of arynes in organic synthesis, Tetrahedron 59 283
(2003) 701–730.
284
[52] D. Pena, D. Perez, E. Guitian, L. Castedo, Palladium-catalyzed cocyclization of 285
arynes with alkynes: selective synthesis of phenanthrenes and naphthalenes, J. 286
Am. Chem. Soc. 121 (1999) 5827–5828.
287
[53] T. Seri, H. Qu, L. Zhou, K.i. Kanno, T. Takahashi, Substituent effects in the 288
preparation of naphthacenes by the coupling reaction of diyne-derived zircona- 289
cyclopentadienes with tetraiodobenzene, Chem. Asian J. 3 (2008) 388–392.
290
[54] T. Takahashi, Y. Li, P. Stepnicka, et al., Coupling reaction of zirconacyclopenta- 291
dienes with dihalonaphthalenes and dihalopyridines: a new procedure for the 292
preparation of substituted anthracenes, quinolines, and isoquinolines, J. Am. 293
Chem. Soc. 124 (2002) 576–582.
[55] E. Yoshikawa, K.V. Radhakrishnan, Y. Yamamoto, Palladium-catalyzed controlled 295
carbopalladation of benzyne, J. Am. Chem. Soc. 122 (2000) 7280–7286.
294
296
[56] L. Adak, N. Yoshikai, Iron-catalyzed annulation reaction of arylindium reagents 297
and alkynes to produce substituted naphthalenes, Tetrahedron 68 (2012) 298
5167–5171.
299
[57] A. Bej, A. Chakraborty, A. Sarkar, Solvent free, phosphine free Pd-catalyzed 300
annulations of aryl bromides with diarylacetylenes, RSC Adv. 3 (2013) 15812– 301
15819.
302
[58] T. Fukutani, K. Hirano, T. Satoh, M. Miura, Synthesis of highly substituted acenes 303
through rhodium-catalyzed oxidative coupling of arylboron reagents with 304
alkynes, J. Org. Chem. 76 (2011) 2867–2874.
305
[59] S. Kawasaki, T. Satoh, M. Miura, M. Nomura, Synthesis of tetrasubstituted 306
naphthalenes by palladium-catalyzed reaction of aryl iodides with internal 307
alkynes, J. Org. Chem. 68 (2003) 6836–6838.
[60] K. Komeyama, T. Kashihara, K. Takaki, Cobalt-catalyzed annulation of aryl iodides 309
with alkynes, Tetrahedron Lett. 54 (2013) 5659–5662.
308
310
[61] M.V. Pham, N. Cramer, Aromatic homologation by non-chelate-assisted Rh(III)- 311
catalyzed C-H functionalization of arenes with alkynes, Angew. Chem. Int. Ed. 53 312
(2014) 3484–3487.
313
[62] L.C. Misal Castro, A. Obata, Y. Aihara, N. Chatani, Chelation-assisted nickel- 314
catalyzed oxidative annulation via double C À H activation/alkyne insertion 315
reaction, Chem. Eur. J. 22 (2016) 1362–1367.
316
[63] Z. Shi, C. Tang, N. Jiao, Chemoselective synthesis of naphthylamides and iso- 317
quinolinones via rhodium-catalyzed oxidative dehydrogenative annulation of 318
benzamides with alkynes, Adv. Synth. Catal. 354 (2012) 2695–2700.
319
[64] J. Wu, X. Cui, X. Mi, Y. Li, Y. Wu, Palladium catalyzed synthesis of highly 320
substituted naphthalenes via direct ring construction from amides with alkynes, 321
Chem. Commun. 46 (2010) 6771–6773.
322
[65] M. Yamashita, H. Horiguchi, K. Hirano, T. Satoh, M. Miura, Fused ring construction 323
around pyrrole, indole, and related compounds via palladium-catalyzed oxidative 324
coupling with alkynes, J. Org. Chem. 74 (2009) 7481–7488.
325
[39] Z. Song, R. Samanta, A.P. Antonchick, Rhodium(III)-catalyzed direct regioselective
synthesis of 7-substituted indoles, Org. Lett. 15 (2013) 5662–5665.
[40] C.E. Houlden, C.D. Bailey, J.G. Ford, et al., Distinct reactivity of Pd(OTs)2: the
intermolecular Pd(II)-catalyzed 1,2-carboamination of dienes, J. Am. Chem. Soc.
130 (2008) 10066–10067.
[41] J.E. Anthony, Functionalized acenes and heteroacenes for organic electronics,
Chem. Rev. 106 (2006) 5028–5048.
[42] M. Bendikov, F. Wudl, D.F. Perepichka, Tetrathiafulvalenes, oligoacenenes, and
their buckminsterfullerene derivatives: the brick and mortar of organic electron-
ics, Chem. Rev. 104 (2004) 4891–4945.
[43] F. Cicoira, C. Santato, Organic light emitting field effect transistors: advances and
perspectives, Adv. Funct. Mater. 17 (2007) 3421–3434.
[44] V.C. Sundar, J. Zaumseil, V. Podzorov, et al., Elastomeric transistor stamps:
reversible probing of charge transport in organic crystals, Science 303 (2004)
1644–1647.
[66] D.R. Stuart, M. Bertrand-Laperle, K.M.N. Burgess, K. Fagnou, Indole synthesis via 326
rhodium catalyzed oxidative coupling of acetanilides and internal alkynes, J. Am. 327
Chem. Soc. 130 (2008) 16474–16475.
328
[67] R.C. Larock, E.K. Yum, M.D. Refvik, Synthesis of 2,3-disubstituted indoles via 329
palladium-catalyzed annulation of internal alkynes, J. Org. Chem. 63 (1998) 330
7652–7662.
331
[68] L. Li, W.W. Brennessel, W.D. Jones, C-H activation of phenyl imines and 2- 332
phenylpyridines with [Cp*MCl2]2 (M = Ir, Rh): regioselectivity, kinetics, and 333
mechanism, Organometallics 28 (2009) 3492–3500.
334
[69] K. Ueura, T. Satoh, M. Miura, Rhodium- and iridium-catalyzed oxidative coupling 335
of benzoic acids with alkynes via regioselective C-H bond cleavage, J. Org. Chem. 336
72 (2007) 5362–5367.
337
[70] K. Ueura, T. Satoh, M. Miura, An efficient waste-free oxidative coupling via 338
regioselective C–H Bond Cleavage: Rh/Cu-catalyzed reaction of benzoic acids 339
with alkynes and acrylates under air, Org. Lett. 9 (2007) 1407–1409.
340
Please cite this article in press as: Y. Wang, et al., Rhodium catalyzed regioselective arene homologation of aryl urea via double C–H