Tris(diisopropylphenolato)titanium Dihydridodiorganylborates
= 15.4 Hz, CH2], 6.39 [d, 3J(1H,1H) = 7.85 Hz, 3-H, py], 6.79 [t,
3J(1H1H) = 7.75 Hz, 4-H, py] ppm. 13C NMR: δ = 30.23 (CMe3),
33.45 (CMe3), 24.12, 25.60, 31.20 (C8H14), 43.05, 44.81, 45.01
(CMe3, CH2), 97.57 (CO), 124.09 (C-3, py), 139.33 (C-4, py),
[2] a) H. R. Hoekstra, J. J. Katz, J. Am. Chem. Soc. 1949, 71,
2488–2492; b) B. D. James, M. G. H. Wallbridge, J. Inorg. Nucl.
Chem. 1966, 28, 2456–2457; c) H. Nöth, Angew. Chem. 1961,
73, 371–383; d) V. V. Volkov, K. G. Myakishev, Sibirskii Khim.
Zh. 1992, 5, 105–108; e) V. Volkov, K. G. Myakishev, Isvest.
Akad. Nauk SSSR, Seriya Khimichesk. 1987, 6, 1429–1431; f)
J. Z. Fang, H. M. Chen, Appl. Phys. Lett. 2009, 94, 044104/1–
3; g) C. J. Dain, J. Anthony, M. J. Goode, D. G. Evans, K. T.
Nicholls, D. W. H. Rankin, H. E. Robertson, J. Chem. Soc.,
Dalton Trans. 1991, 967–977.
160.61 (C-2, py) ppm. 11B NMR:
δ
=
20.3 (br.) ppm.
C41H75BNO2Ti (683.55): calcd. C 72.0, H 11.05, N 2.05; found C
69.12, H 10.51, N 1.89.
Reaction of Tris(2,6-diisopropylphenolato)titanium(IV) Chloride
with Lithium(H,H-9-borafluorenyl)·3THF:
A
suspension of
[3] a) H. Nöth, R. Hartwimmer, Chem. Ber. 1960, 93, 2238–2245;
b) H. Nöth, R. Hartwimmer, Chem. Ber. 1960, 93, 2246–2251.
[4] a) E. Ding, B. Du, F. C. Liu, S. Liu, E. A. Meyers, S. G. Shore,
Inorg. Chem. 2005, 44, 4871–4878; b) E. J. M. Hamilton, J. S.
Park, X. Chen, S. Liu, M. R. Sturgeon, E. A. Meyers, S. G.
Shore, Organometallics 2009, 28, 3973–3980; c) S. G. Shore,
J. S. Park, Y. Chen, S. Liu, Nat. Meet. Am. Chem. Soc., San
Francisco, 2006, INOR–370; d) F. Lacroix, C. E. Plesnik, S.
Liu, E. A. Meyers, S. G. Shore, J. Organomet. Chem. 2003, 687,
69–77; e) N. N. Ho, R. Bau, S. Liu, J. Liu, E. A. Meyers, S. G.
Shore, J. Organomet. Chem. 2002, 654, 216–220; f) C. Plesnik,
F. Liu, S. Liu, J. Liu, E. A. Meyers, S. G. Shore, Organometal-
lics 2001, 20, 3599–3606.
Li(H2BC13H9)·3THF[20] (1.17 g, 3.02 mmol) in diethyl ether
(50 mL) was added to a solution of 1 (1.68 g, 2.73 mmol) in diethyl
ether (15 mL) at 0 °C. After stirring for 10 min, the residue in the
dropping funnel was added to the suspension by adding THF
(10 mL). This caused a change in colour from orange to orange-
red. The solution showed then an 11B NMR signal at –20.4 ppm [t,
1J(11B,1H) = 78 Hz, rel. intensity: 73%, C12H8BH2Li] and 7.6 ppm
[broad signal of C12H8BH2Ti(OAr)3, 27%)]. After stirring the solu-
tion for 18 h at ambient temperature the solvent was removed in
vacuo. The solid residue was treated with hexane (60 mL) and the
insoluble material removed by filtration. After 50% of the hexane
had been evaporated, the filtrate was cooled to –30 °C. Yellow crys-
tals separated which proved to be tetrakis(2,6-diisopropylphen-
olato)titanium by determining its cell constants.[18]
[5]
[6]
H. Nöth, M. Schmidt, Organometallics 1995, 14, 4601–4610.
F. Corraza, C. Floriani, A. Chiesi-Villa, C. Gutamini, Inorg.
Chem. 1991, 30, 145–148.
[7]
a) M. G. Thorn, J. E. Hill, S. A. Waratuka, E. S. Johnson, P. E.
Fanwick, I. P. Rothwell, J. Am. Chem. Soc. 1997, 119, 8630–
8641; b) M. G. Thorn, Z. E. Etheridge, P. E. Fanwick, I. P.
Rothwell, J. Organomet. Chem. 1999, 591, 148–152.
R. T. Toth, D. W. Stephan, Can. J. Chem. 1998, 69, 172–178.
A. J. Nelson, Ch. Shen, J. M. Waters, Polyhedron 2006, 25,
2039–2054.
Reaction of Methyltris(2,6-diisopropylphenolato)titanium(IV) with
Catecholborane: Compound 2 (30 mg) was dissolved in hexane
(2 mL) in an NMR tube. After cooling with liquid nitrogen, 10
drops of catecholborane were added. The NMR tube was then se-
aled in vacuo. 11B NMR spectra were recorded at various tempera-
tures beginning at –80 °C. The observed data are summarized in
Table 2. It can be seen that the main product is the B-methylcate-
cholborane (19; increase from 8 to 20% at higher temperature) as
well as (2,6-iPr2C6H3O)3Ti[H2B(O2C6H4)], 20–22.
[8]
[9]
[10]
[11]
[12]
F. Akagi, T. Matsuo, H. Kawaguchi, J. Am. Chem. Soc. 2005,
127, 11936–11937.
A. Shah, A. Sing, R. F. C. Mehrotra, Ind. J. Chem., Sect. A
1993, 32, 632–635.
R. N. Chesnut, L. D. Durfee, D. Loren, P. E. Fanwick, I. P.
Rothwell, K. Folting, J. D. Hoffman, Polyhedron 1987, 6, 2013–
2026.
X-ray Structure Analysis: The air- and moisture-sensitive crystals
were covered with a perfluoroether oil, cooled with cold N2 to
about –30 °C and a suitable crystal selected under the microscope.
It was fixed on a glass fibre, which was mounted in a small copper
tube and then transferred to the goniometer head cooled to about
–80 °C by the flow of N2. Reflections of five sets of 15 frames were
collected at different ω and φ angles for the determination of the
cell constants with the program SAINT.[32] Data collection was per-
formed in the hemisphere mode and reduced with the program
SMART.[32] SHELX93 or SHELXTL[32] was used for data re-
duction, structure solution and refinement. The positions of the
BH atoms were isotropically refined, all other H atoms bonded to
C atoms were placed at calculated positions and refined as riding
on the respective C atoms. Table 3 contains relevant crystallo-
graphic data.
[13] A. Sato, A. Hattori, K. Ishima, S. Saito, H. Yamamoto, Chem.
Lett. 2003, 32, 1002–1007.
K. Waterpaugh, C. N. Caughlan, Inorg. Chem. 1966, 5, 1782–
1786.
K. H. Thiele, H. Windisch, H. Schumann, G. Kociol-Köhn, Z.
Anorg. Allg. Chem. 1994, 620, 523–526.
D. C. Bradley, H. Cutynska, J. D. J. Backer-Dirks, M. B. Hurst-
house, A. A. Ibrahim, M. Montecalli, Polyhedron 1990, 9,
1423–1427.
M. Schmidt-Amelunxen, Ph. D. Thesis, University of Munich,
1995.
L. D. Durfee, S. L. Latesky, I. P. Rothwell, J. C. Huffman, K.
Fölting, Inorg. Chem. 1985, 24, 4569–4573.
a) G. T. Jordan, S. G. Shore, Inorg. Chem. 1996, 35, 1089–1090;
b) G. T. Jordan, F. C. Liu, S. G. Shore, Inorg. Chem. 1997, 36,
5597–5602.
a) J. Knizek, Diploma Thesis, University of Munich, 1996; b)
J. Knizek, Ph. D. Thesis, University of Munich, 1999; c) J. Kni-
zek, H. Nöth, J. Organomet. Chem. 2000, 614/615, 168–187.
H. Nöth, B. Wrackmeyer, NMR-Basic Principles and Progress,
vol. 14 (“Nuclear Magnetic Resonance Spectroscopy of Boron
Compounds”) (Eds.: P. Diehl, E. Fluck, R. Kosfeld), Springer,
Berlin, Heidelberg, New York, 1978.
[14]
[15]
[16]
[17]
[18]
[19]
CCDC-778514 (for 2), -778515 (for 14), -778516 (for 11), -778517
(for 16), -778518 (for 25) and -77519 (for 17) contain the supple-
mentary crystallographic data for this paper. These data can be
obtained free of charge from The Cambridge Crystallographic
Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
[20]
[21]
Acknowledgments
[22]
[23]
T. J. Marks, J. R. Kolb, Chem. Rev. 1977, 77, 263–293.
a) A. Haaland, W. Scherer, K. Ruud, G. S. McGrady, A. J.
Downs, O. Swang, J. Am. Chem. Soc. 1998, 120, 3762–3772;
b) W. Scherer, T. Priemeier, A. Haaland, H. V. Volden, G. S.
Mc Grady, A. J. Downs, R. Boese, Organometallics 1998, 17,
4406–4412; c) Z. Dawoosi, M. L. H. Green, V. S. B. Mtetwa,
K. Prout, A. J. Schultz, J. Williams, T. F. Koetzle, J. Chem.
We are indebted to Chemetall GmbH for financial support. We
also thank M. Kidik, P. Mayer and Mrs. D. Ewald for help in the
laboratory and for recording many spectra.
[1] St. Leiner, P. Mayer, H. Nöth, Z. Naturforsch., Teil B 2009, 64,
793–799.
Eur. J. Inorg. Chem. 2011, 1888–1900
© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjic.org
1899