Communication
ChemComm
W. Wang, Chem. Soc. Rev., 2013, 42, 548–568; (d) X. Feng, X. Ding
and D. Jiang, Chem. Soc. Rev., 2012, 41, 6010–6022.
due to their different porosity morphology. For convenience,
3D-Flu-COFbenzyl alcohol was used to investigate the details of the
responsive behaviour unless otherwise stated. Then, the responsive
behaviour of the 3D-Flu-COF powder was further investigated in
detail. As shown in Fig. 4b–d, the 3D-Flu-COF is still sensitive to a
trace amount of TFA with a low concentration of 0.0002 mol Lꢀ1
(22.8 ppm) as the new peak at 470 nm still appeared in the UV-vis
spectra. With the increase of the TFA concentration, the absorption
intensity at 470 nm gradually increased without any saturation
effects until the concentration of TFA reached 5 mol Lꢀ1. Besides,
the colour of the acid-treated 3D-Flu-COF (defined as 3D-Flu-COF-
TFA) could be recovered to the original white upon exposure to
trimethylamine (TEA) vapor (Fig. 4d). Notably, the crystallinity,
porosity as well as morphology of the 3D-Flu-COF after the sensing
performance are still maintained and comparable with those of the
pristine samples, except for a slight decrease in PXRD peak intensity
(Fig. S16–S20, ESI†). As already discussed above, 3D-Flu-COFs
applied as acidichromic sensors toward trifluoroacetic acid not only
feature a detection limit as low as 22.8 ppm, but also exhibit a wide
response range of 4 orders of magnitude, which outperform most
reported COFs (Table S2, ESI†).11b–d Similar to previous reports,11
the colour change of the 3D-Flu-COF can be attributed to
the protonation of the imine linkages under acidic conditions
(Fig. S21, ESI†), which was verified by the FI-IR spectra. With the
increase of TFA concentration, a new band at 1668 cmꢀ1 ascribed to
the CQNH+ stretching vibration gradually appeared, accompanied
by the attenuation of the imine CQN band around 1629 cmꢀ1 in
the FT-IR spectra. Furthermore, the FT-IR spectrum of 3D-Flu-COF-
TFA could be recovered to the original mode upon exposure to the
TEA vapour (Fig. S22, ESI†).
2 (a) C. J. Doonan, D. J. Tranchemontagne, T. G. Glover, J. R. Hunt and
O. M. Yaghi, Nat. Chem., 2010, 2, 235–238; (b) H. Fan, A. Mundstock,
A. Feldhoff, A. Knebel, J. Gu, H. Meng and J. Caro, J. Am. Chem. Soc.,
2018, 140, 10094–10098; (c) H. Furukawa and O. M. Yaghi, J. Am.
Chem. Soc., 2009, 131, 8875–8883; (d) C. Gao, J. Li, S. Yin, G. Lin,
T. Ma, Y. Meng, J. Sun and C. Wang, Angew. Chem., Int. Ed., 2019, 58,
9770–9775.
3 (a) S. B. Alahakoon, C. M. Thompson, G. Occhialini and
R. A. Smaldone, ChemSusChem, 2017, 10, 2116–2129; (b) A. Halder,
M. Ghosh, A. Khayum, M. S. Bera, M. Addicoat, H. S. Sasmal,
S. Karak, S. Kurungot and R. Banerjee, J. Am. Chem. Soc., 2018,
140, 10941–10945; (c) J. Lv, Y.-X. Tan, J. Xie, R. Yang, M. Yu, S. Sun,
M.-D. Li, D. Yuan and Y. Wang, Angew. Chem., Int. Ed., 2018, 57,
12716–12720.
4 (a) S. Lu, Y. Hu, S. Wan, R. McCaffrey, Y. Jin, H. Gu and W. Zhang,
J. Am. Chem. Soc., 2017, 139, 17082–17088; (b) S. Yan, X. Guan, H. Li,
D. Li, M. Xue, Y. Yan, V. Valtchev, S. Qiu and Q. Fang, J. Am. Chem.
Soc., 2019, 141, 2920–2924; (c) X. Yan, H. Liu, Y. Li, W. Chen,
T. Zhang, Z. Zhao, G. Xing and L. Chen, Macromolecules, 2019, 52,
7977–7983.
5 (a) Q. Fang, J. Wang, S. Gu, R. B. Kaspar, Z. Zhuang, J. Zheng,
H. Guo, S. Qiu and Y. Yan, J. Am. Chem. Soc., 2015, 137, 8352–8355;
(b) S. Mitra, H. S. Sasmal, T. Kundu, S. Kandambeth, K. Illath,
´
´
D. Dıaz Dıaz and R. Banerjee, J. Am. Chem. Soc., 2017, 139,
4513–4520; (c) V. S. Vyas, M. Vishwakarma, I. Moudrakovski,
F. Haase, G. Savasci, C. Ochsenfeld, J. P. Spatz and B. V. Lotsch,
Adv. Mater., 2016, 28, 8749–8754; (d) G. Zhang, X. Li, Q. Liao, Y. Liu,
K. Xi, W. Huang and X. Jia, Nat. Commun., 2018, 9, 2785.
6 (a) L. Ascherl, E. W. Evans, M. Hennemann, D. Di Nuzzo,
A. G. Hufnagel, M. Beetz, R. H. Friend, T. Clark, T. Bein and
F. Auras, Nat. Commun., 2018, 9, 3802; (b) P. Wang, F. Zhou,
C. Zhang, S.-Y. Yin, L. Teng, L. Chen, X.-X. Hu, H.-W. Liu, X. Yin
and X.-B. Zhang, Chem. Sci., 2018, 9, 8402–8408; (c) S. Jhulki,
A. M. Evans, X.-L. Hao, M. W. Cooper, C. H. Feriante, J. Leisen,
´
H. Li, D. Lam, M. C. Hersam, S. Barlow, J.-L. Bredas, W. R. Dichtel
and S. R. Marder, J. Am. Chem. Soc., 2020, 142, 783–791; (d) X. Wu,
X. Han, Q. Xu, Y. Liu, C. Yuan, S. Yang, Y. Liu, J. Jiang and Y. Cui,
J. Am. Chem. Soc., 2019, 141, 7081–7089.
In summary, we have successfully constructed a new imine-
linked three-dimensional COF (3D-Flu-COF) via a ‘‘two-in-one’’
molecular design strategy for the first time. This approach
greatly simplified the synthetic procedure of 3D COFs, and a
3D-Flu-COF with high crystallinity could be obtained in various
simplex solvents. Benefiting from the non-conjugated structure
as well as the imine linkages, the 3D-Flu-COF exhibits excellent
acidichromic sensing performance with high sensitivity and
good reversibility. This ‘‘two-in-one’’ strategy would open new
opportunities for the facile construction of novel 3D COFs, and
we envision that more functional 3D COFs will be developed in
the near future.
This work was financially supported by the National Natural
Science Foundation of China (51973153), the National Key
Research and Development Program of China (2017YFA02
07500), and the Natural Science Foundation of Tianjin City
(17JCJQJC44600).
7 (a) X. Ma and T. F. Scott, Commun. Chem., 2018, 1, 98;
(b) L. A. Baldwin, J. W. Crowe, D. A. Pyles and P. L. McGrier,
J. Am. Chem. Soc., 2016, 138, 15134–15137; (c) C. Gao, J. Li, S. Yin,
J. Sun and C. Wang, J. Am. Chem. Soc., 2020, 142,
3718–3723; (d) Y. Wang, Y. Liu, H. Li, X. Guan, M. Xue, Y. Yan,
V. Valtchev, S. Qiu and Q. Fang, J. Am. Chem. Soc., 2020, 142,
3736–3741.
´
8 P. J. Waller, F. Gandara and O. M. Yaghi, Acc. Chem. Res., 2015, 48,
3053–3063.
9 X. Guan, F. Chen, Q. Fang and S. Qiu, Chem. Soc. Rev., 2020, 49,
1357–1384.
10 (a) Y. Li, Q. Chen, T. Xu, Z. Xie, J. Liu, X. Yu, S. Ma, T. Qin and
L. Chen, J. Am. Chem. Soc., 2019, 141, 13822–13828; (b) W. Hao,
D. Chen, Y. Li, Z. Yang, G. Xing, J. Li and L. Chen, Chem. Mater.,
2019, 31, 8100–8105.
11 (a) F.-Z. Cui, J.-J. Xie, S.-Y. Jiang, S.-X. Gan, D.-L. Ma, R.-R. Liang,
G.-F. Jiang and X. Zhao, Chem. Commun., 2019, 55, 4550–4553;
(b) L. Ascherl, E. W. Evans, J. Gorman, S. Orsborne, D. Bessinger,
T. Bein, R. H. Friend and F. Auras, J. Am. Chem. Soc., 2019, 141,
15693–15699; (c) B. Zhang, X. Song, Y. Li, Y. Li, Z. Peng, L. Ye and
L. Chen, Chem. Commun., 2020, 56, 3253–3256; (d) D. Chen,
W. Chen, G. Xing, T. Zhang and L. Chen, Chem. – Eur. J., 2020, 26,
8377–8381; (e) Y.-Z. Xie, G.-G. Shan, Z.-Y. Zhou and Z.-M. Su, Sens.
Actuators, B, 2013, 177, 41–49.
12 X. Guan, Y. Ma, H. Li, Y. Yusran, M. Xue, Q. Fang, Y. Yan, V. Valtchev
and S. Qiu, J. Am. Chem. Soc., 2018, 140, 4494–4498.
13 Z.-J. Li, S.-Y. Ding, H.-D. Xue, W. Cao and W. Wang, Chem. Commun.,
2016, 52, 7217–7220.
Conflicts of interest
There are no conflicts to declare.
´
14 (a) G. Das, T. Skorjanc, S. K. Sharma, F. Gandara, M. Lusi,
D. S. Shankar Rao, S. Vimala, S. Krishna Prasad, J. Raya,
D. S. Han, R. Jagannathan, J.-C. Olsen and A. Trabolsi, J. Am. Chem.
Soc., 2017, 139, 9558–9565; (b) W. Ma, Q. Zheng, Y. He, G. Li,
W. Guo, Z. Lin and L. Zhang, J. Am. Chem. Soc., 2019, 141,
18271–18277.
Notes and references
ˆ ´
1 (a) A. P. Cote, A. I. Benin, N. W. Ockwig, M. Keeffe, A. J. Matzger
and O. M. Yaghi, Science, 2005, 310, 1166–1170; (b) C. S. Diercks and
O. M. Yaghi, Science, 2017, 355, eaal1585; (c) S.-Y. Ding and
This journal is The Royal Society of Chemistry 2021
Chem. Commun., 2021, 57, 2136ꢀ2139 | 2139