4534–4535; (b) J. Kang, G. Zhao, J. Xu and W. Yang, Chem.
Commun., 2010, 46, 2868–2870.
3 L. Wu and K. Burgess, J. Am. Chem. Soc., 2008, 130, 4089–4096.
4 (a) D. P. Barondeau, C. J. Kassmann, J. A. Tainer and E. D. Getzoff,
J. Am. Chem. Soc., 2002, 124, 3522–3524; (b) A. Baldridge,
K. M. Solntsev, C. Song, T. Tanioka, J. Kowalik, K. Hardcastle
and L. M. Tolbert, Chem. Commun., 2010, 46, 5686–5688.
5 (a) E. L. Que, D. W. Domaille and C. J. Chang, Chem. Rev., 2008,
108, 1517–1549; (b) Z. Xu, J. Yoon and D. R. Spring, Chem. Soc.
Rev., 2010, 39, 1996–2006; (c) C. Lodeiro, J. L. Capelo,
J. C. Mejuto, E. Oliveira, H. M. Santos, B. Pedras and
C. Nunez, Chem. Soc. Rev., 2010, 39, 2948–2976; (d) P. Jiang
and Z. Guo, Coord. Chem. Rev., 2004, 248, 205–229;
(e) K. Kikuchi, K. Komatsu and T. Nagano, Curr. Opin. Chem.
Biol., 2004, 8, 182–191; (f) E. Tomata and S. J. Lippard, Curr.
Opin. Chem. Biol., 2010, 14, 225–230.
6 (a) J. F. Callan, A. P. De Silva and D. C. Magri, Tetrahedron, 2005,
61, 8551–8588; (b) Z. Xu, K.-H. Baek, H. N. Kim, J. Cui, X. Qian,
D. R. Spring, I. Shin and J. Yoon, J. Am. Chem. Soc., 2010, 132,
601–610.
7 (a) G. K. Walkup, S. C. Burdette, S. J. Lippard and R. Y. Tsien,
J. Am. Chem. Soc., 2000, 122, 5644–5645; (b) T. Hirano, K. Kikuchi,
Y. Urano, T. Higuchi and T. Nagano, J. Am. Chem. Soc., 2000, 122,
12399–12400; (c) F. Qian, C. Zhang, Y. Zhang, W. He, X. Gao,
P. Hu and Z. Guo, J. Am. Chem. Soc., 2009, 131, 1460–1468;
(d) L. Zhang, C. S. Murphy, G.-C. Kuang, K. L. Hazelwood,
M. H. Constantino, M. W. Davidson and L. Zhu, Chem. Commun.,
2009, 7408–7410; (e) X. Lu, W. Zhu, Y. Xie, X. Li, Y. Gao, F. Li
and H. Tian, Chem.–Eur. J., 2010, 16, 8355–8364.
8 (a) M. Royzen, A. Durandin, V. G. Young, N. E. Geacintov and
J. W. Canary, J. Am. Chem. Soc., 2006, 128, 3854–3855;
(b) Y. Zhang, X. Guo, W. Si, L. Jia and X. Qian, Org. Lett.,
2008, 10, 473–476; (c) L. Xue, C. Liu and H. Jiang, Chem. Commun.,
2009, 1061–1063; (d) X. Zhou, B. Yu, Y. Guo, X. Tang, H. Zhang
and W. Liu, Inorg. Chem., 2010, 49, 4002–4007; (e) Y. Liu,
N. Zhang, Y. Chen and L.-H. Wang, Org. Lett., 2007, 9, 315–318;
(f) M. A. Palacios, Z. Wang, V. A. Montes, G. V. Zyryanov and
P. Anzenbacher, J. Am. Chem. Soc., 2008, 130, 10307–10314.
9 (a) A. Ajayaghosh, P. Carol and S. Sreejith, J. Am. Chem. Soc.,
2005, 127, 14962–14963; (b) P. N. W. Baxter, J. Org. Chem., 2001,
66, 4170–4179; (c) A. E. Dennis and R. C. Smith, Chem. Commun.,
2007, 4641–4643; (d) H. Huang and D. G. Drueckhammer, Chem.
Commun., 2005, 5196–5198.
Fig. 4 Phase contrast (left) and fluorescence (right) microscopy
images of HeLa cells incubated for 30 min with 1 (40 mM), without
(top) and with (bottom) the addition of Zn2+ (1 equiv.).
To further explore the selectivity of 1 for Zn2+, we measured
the fluorescence intensity of 1 in the presence of Zn2+ and other
metal ions in aqueous buffer (CH3CN–HEPES, 4 : 1, v/v;
HEPES, 50 mM, pH 7.4) (Fig. S8, ESIw). The emission intensity
of Zn2+-bound 1 is unperturbed in the presence of 1 equiv.
Na+, Ca2+, Mg2+, Cd2+, Ag+, Hg2+, Pb2+ and Ni2+
,
indicating excellent selectivity for Zn2+ over these competing
cations, whereas the same amounts of Cu2+ and Co2+ quench
the fluorescence, which is due to the displacement of Zn2+ by
Cu2+ or Co2+ from the Zn2+–1 complex.8d,19 It is important to
note that Cd2+ does not interfere with the detection of Zn2+ by
1, in stark contrast to the previously reported GFP analogue,4b
this is due to the porphyrin-like structure of 1 which results in
selective complexation of Zn2+
.
In vitro Zn2+ sensing and imaging was investigated using
probe 1 in live HeLa cells (Fig. 4). The cells exhibited strong
blue-green fluorescence with the addition of Zn2+. These
results indicate that 1 may be used as a possible sensor to
detect Zn2+ released from stimulated cells.
10 (a) H. Yuasa, N. Miyagawa, T. Izumi, M. Nakatani, M. Izumi and
H. Hashimoto, Org. Lett., 2004, 6, 1489–1492; (b) S. Y. Park,
J. H. Yoon, C. S. Hong, R. Souane, J. S. Kim, S. E. Matthews and
J. Vicens, J. Org. Chem., 2008, 73, 8212–8218; (c) Z. Zhong and
Y. Zhao, Org. Lett., 2007, 9, 2891–2894.
In conclusion, a GFP-inspired imidazolone derivative con-
taining a 1,10-phenanthroline moiety was designed and synthesized
as a Zn2+ specific turn-on fluorescent chemosensor. We are
currently exploring the use of this design strategy in the construc-
tion of other fluorescent chemosensors.
11 (a) W. R. Browne and B. L. Feringa, Annu. Rev. Phys. Chem.,
2009, 60, 407–428; (b) P. Molina, A. Tarraga and A. Caballero,
´
Eur. J. Inorg. Chem., 2008, 3401–3417; (c) D. Zhang, Q. Zhang,
J. Su and H. Tian, Chem. Commun., 2009, 1700–1702.
12 M. Ishida, Y. Naruta and F. Tani, Angew. Chem., Int. Ed., 2010,
49, 91–94.
13 (a) A. Bencin and V. Lippolis, Coord. Chem. Rev., 2010, 254,
2096–2180; (b) G. M. Cockrell, G. Zhang, D. G. VanDerveer,
R. P. Thummel and R. D. Hancock, J. Am. Chem. Soc., 2008, 130,
1420–1430.
14 C. J. Chandler, L. W. Deady and J. A. Reiss, J. Heterocycl. Chem.,
1981, 18, 599–601.
15 J. Dong, K. M. Solntsev and L. M. Tolbert, J. Am. Chem. Soc.,
2006, 128, 12038–12039.
16 C. M. Megley, L. A. Dickson, S. L. Maddalo, G. J. Chandler and
M. Zimmer, J. Phys. Chem. B, 2009, 113, 302–308.
17 H. A. Benesi and J. H. Hildebrand, J. Am. Chem. Soc., 1949, 71,
2703–2707.
18 (a) S. Luin, V. Voliani, G. Lanza, R. Bizzarri, R. Nifosı, P. Amat,
V. Tozzini, M. Serresi and F. Beltram, J. Am. Chem. Soc., 2009,
131, 96–103; (b) V. Tozzini, A. R. Bizzarrib, V. Pellegrinia,
R. Nifosıa, P. Giannozzia, A. Iulianoc, S. Cannistrarob and
This work is supported by Major Research Plan of National
Natural Science Foundation of China (Grant No. 91027035)
and the Fundamental Research Funds for the Central Univer-
sities (Grant No. WK1013002). Y.-T.L. is supported by the
Program for Professor of Special Appointment (Eastern Scholar)
at Shanghai Institutions of Higher Learning. We also thank the
Catalysis And Sensing for our Environment (CASE) consortium
for networking opportunities and Dr Yong Wang at Dalian
Institute of Chemical Physics (Chinese Academy of Sciences) for
the help in DFT calculation.
Notes and references
1 (a) Green Fluorescent Protein: Properties, Applications and Protocols,
ed. M. Chale and S. R. Kain, John Wiley & Sons, Hoboken,
New Jersey, 2006; (b) M. Zimmer, Chem. Rev., 2002, 102, 759–782.
2 (a) K.-Y. Chen, Y.-M. Cheng, C.-H. Lai, C.-C. Hsu, M.-L. Ho,
G.-H. Lee and P.-T. Chou, J. Am. Chem. Soc., 2007, 129,
F. Beltram, Chem. Phys., 2003, 287, 33–42; (c) P. Altoe,
´
F. Bernardi, M. Garavelli, G. Orlandi and F. Negri, J. Am. Chem.
Soc., 2005, 127, 3952–3963.
19 S. C. Burdette, C. J. Frederickson, W. Bu and S. J. Lippard, J. Am.
Chem. Soc., 2003, 125, 1778–1787.
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 4361–4363 4363