Scheme 1. Chemo- and Regioselective Addition of Sn Radical to
Terminal Alkyne Moiety of Enynes in the Preparation of
Complex Polycyclic Frameworks
Scheme 2. Synthetic Strategies for the Enyne Synthesis
Table 1. Optimizing Conditions for the 5-exo-trig Radical
Cyclization of Enynes
with potential applications as metallocene complex pre-
cursors, NHC ligands, and functional materials.5
Reported methods for indene preparation have included
the cyclization of phenyl-vinyl or phenyl-substituted allylic
alcohols,6 metal-mediated (Pd, Ni, Pt, Co, Au, Fe) car-
boannulations of alkynes,7 reductive photocyclizations of
enediynes,8 and Brønsted acid catalyzed cyclizations of
aryl-1,3-dienes.9 Despite the variety of reported synthetic
approaches, the intramolecular radical cyclization of en-
ynes to yield functionalized indenes has, to the best of our
knowledge, remained undiscovered until the present report.
The library of enynes was synthesized by varying sub-
stituents at both the alkynyl and alkenyl ends. Depending
on the availability of starting materials, we used strategies
based on the combination of either Wittig or Heck reac-
tions with Sonogashira coupling, as shown in Scheme 2 (see
Supporting Information (SI) for the details).
reagent (1.2 equiv)/
entry
initiator (0.4 equiv)
solvent
yield (%)
1
2
3
4
Bu3SnH/AIBN
Bu3SnH/AIBN
Bu3SnH/AIBN
(Me3Si)3SiH/AIBN
benzene
acetonitrile
toluene
40
24
87
toluene
complex
mixture
NR
20
5
6
7
8
9
Et3SiH/AIBN
toluene
toluene
toluene
toluene
toluene
Ph3SnH/AIBN
Bu3SnH/DTBPB
Bu3SnH/TOOT
Bu3SnH/ABCN
52
18
60
The cyclization of enyne 1 was screened with a variety of
initiators and radical reagents, as shown in Table 1. The
combination of Bu3SnH and AIBN in refluxing toluene
was the most efficient, producing indene 1a in 87% yield.
The Bu3SnH/AIBN ratios and reaction times were sepa-
rately optimized for each substrate, as detailed in the SI. It
was essential to maintain a relatively low concentration of
reacting radicals using syringe pump addition.
The scope of this reaction is demonstrated by the
successful cyclization of enynes shown in Table 2. The
variations of substituents at the alkyne terminus illustrates
that the reaction is particularly efficient when the vinyl
radical, formed via the intermolecular attack, enjoys delo-
calization with an electron rich π-system. Alkyl and TMS-
substituted alkynes also give acceptable yields (Table 2,
entries 6, 7), but the reaction proceeds considerably slower.
The reaction retains its efficiency when the alkene sub-
stitution was changed from ester to amide, cyano, and aryl
groups (Table 2, entries 8, 9, 10).
(5) (a) Chirik, P. J. Organometallics 2010, 29, 1500. (b) Guo, S.; Liu,
Y. Org. Biomol. Chem. 2008, 6, 2064. (c) Guan, Z.-H.; Ren, Z.-H.; Zhao,
L.-B.; Liang, Y.-M. Org. Biomol. Chem. 2008, 6, 1040. (d) Enders, M.;
€
Baker, R. W. Curr. Org. Chem. 2006, 10, 937. (e) Silver, S.; Leppanen,
€
A.-S.; Sjoholm, R.; Penninkangas, A.; Leino, R. Eur. J. Org. Chem.
2005, 1058. (f) Leino, R.; Lehmus, P.; Lehtonen, A. Eur. J. Inorg. Chem.
2004, 3201. (g) Hummel, S.; Kirsch, S. F. J. Org. Chem. 2011, 7, 847.
(6) (a) Usanov, D. L.; Yamamoto, H. Org. Lett. 2012, 14, 414. (b)
Panteleev, J.; Huang, R. Y.; Lui, H. E. K.; Lautens, M. Org. Lett. 2011,
13, 5314. (c) Smith, C. D.; Rosocha, G.; Mui, L.; Batey, R. A. J. Org.
Chem. 2010, 75, 4716. (d) Xi, Z. F.; Guo, R. Y.; Mito, S.; Yan, H. L.;
Kanno, K, I.; Nakajima, K.; Takahashi, T. J. Org. Chem. 2003, 68, 1252.
(e) Olah, G. A.; Asensio, G.; Mayer, H. J. Org. Chem. 1978, 43, 1518. (f)
Miller, W. G.; Pittman, C. U., Jr. J. Org. Chem. 1974, 39, 1955.
(7) (a) Bi, H.-P.; Liu, X.-Y.; Gou, F.-R.; Guo, L.-N.; Duan, X.-H.;
Liang, Y.-M. Org. Lett. 2007, 9, 3527. (b) Zhang, D.; Liu, Z.; Yum,
E. K.; Larock, R. C. J. Org. Chem. 2007, 72, 251. (c) Quan, L. G.;
Gevorgyan, V.; Yamamoto, Y. J. Am. Chem. Soc. 1999, 121, 3545. (d)
Deng, R.; Sun, L.; Li, Z. Org. Lett. 2007, 9, 5207. (e) Rayabarapu, D. K.;
Yang, C.-H.; Cheng, C.-H. J. Org. Chem. 2003, 68, 6726. (g) Zhao, J.;
Clark, D. A. Org. Lett. 2012, 14, 1668. (h) Sanz, R.; Miguel, D.;
Rodriguez, F. Angew. Chem., Int. Ed. 2008, 47, 7354. (i) Ye, L.; Wang,
Y.; Aue, D. H.; Zhang, L. J. Am. Chem. Soc. 2011, 134, 31. (j) Liu, C.-R.;
Yang, F.-L.; Jin, Y.-Z.; Ma, X. T.; Cheng, D.-J.; Li, C. N.; Tian, S.-K.
Org. Lett. 2010, 12, 3832.
The highly selective cyclization of enyne 10 having the
identical substituents at the ene and yne termini is parti-
cularly interesting. In the latter case, it is evident that it is
the differences between the close chemical cousins, alkene
and alkyne, rather than the substituent effects that are
responsible for the observed selectivity.
(8) (a) Alabugin, I. V.; Kovalenko, S. V. J. Am. Chem. Soc. 2002, 124,
9052. (b) Breiner, B.; Kaya, K.; Roy, S.; Yang, W.-Y.; Alabugin, I. V.
Org. Biomol. Chem. 2012, 10, 3974.
(9) Eom, D.; Park, S.; Park, Y.; Rye, T.; Lee, P. H. Org. Lett. 2012,
14, 5392.
Org. Lett., Vol. 15, No. 22, 2013
5651