residue partitioned between dichloromethane (10 mL) and water
(5 mL). The organic layer was dried over MgSO4, filtered and
concentrated in vacuo. Flash chromatography of the residue over
silica gel (petroleum ether–EtOAc, 1 : 1) afforded amide 2¢-epi-17
(85 mg, 85%) as a colorless oil: [a]2D0 -22 (c 0.5 in CHCl3); IR
(KBr, nmax/cm-1: 3375, 2928, 1561, 1383, 1068, 837, 636; dH (400
MHz; CDCl3; Me4Si) 0.05 (s, 3H, CH3), 0.06 (s, 3H, CH3), 0.90
(s, 9H, 3 ¥ CH3), 0.87–0.92 (m, 3H, CH3), 1.24–1.45 (m, 8H, 8-
H, 9-H, 10-H, and 11-H), 2.09–2.12 (m, 2H, 3-H), 2.17–2.23 (m,
4H, 2-H and 6-H), 2.30–2.34 (m, 2H, 3¢¢-H), 2.41–2.42 (m, 1H,
5¢¢-H), 3.14–3.16 (m, 1H, 7-H), 3.22–3.28 (m, 1H, 1¢b-H), 3.31 (s,
3H, OCH3), 3.50–3.55 (m, 1H, 1¢a-H), 3.82–3.84 (m, 1H, 4¢¢-H),
4.28 (d, J 2.0, 1H, 2¢-H), 4.34 (d, J 6.8, 1H, 6¢¢-H), 4.41(d, J 11.0,
1H, ArCH2), 4.68 (d, J 11.0, 1H, ArCH2), 5.46–5.48 (m, 2H, 4-H
and 5-H), 5.62 (br, 1H, NH), 5.94–5.97 (m, 1H, 2¢¢-H), 7.31–7.37
(m, 5H, 5 ¥ ArH); dC (100 MHz; CDCl3; Me4Si) -4.8 (CH3), -4.6
(CH3), 5.5 (CH3), 14.1 (CH3, 12-C), 18.1 (C), 22.7 (CH2, 11-C),
25.0 (CH2, 9-C), 25.8 (3 ¥ CH3), 28.8 (CH2, 3-C), 30.7 (CH2, 3¢¢-
C), 32.0 (CH2, 10-C), 33.3 (CH2, 8-C), 36.3 (CH2, 6-C), 36.5 (CH2,
2-C), 36.8 (CH, 5¢¢-C), 44.1 (CH2, 1¢-C), 56.4 (OCH3), 68.5 (CH,
7-C), 70.4 (CH2), 70.9 (CH, 4¢¢-C), 78.6 (CH, 2¢-C), 80.7 (CH, 6¢¢-
C), 121.8 (CH, 2¢¢-C), 127.5 (CH, 5-C), 127.9 (ArCH), 128.0 (2 ¥
ArCH), 128.6 (2 ¥ ArCH), 130.8 (CH, 4-C), 136.5 (C, 1¢¢-C), 137.8
(ArC), 172.9 (CO, 1-C); HRMS (ESI) m/z calcd for C35H60NO5Si
[M + H]+ 602.4235, found 602.4237.
Notes and references
1 (a) L. T. Tan, T. Okino and W. H. Gerwick, J. Nat. Prod., 2000, 63,
952; (b) K. Tidgewell, B. R. Clark, W. H. Gerwick, In Comprehensive
Natural Products Chemistry; Pergamen Press, 2010, Vol. 8, 181. Brief
overview of the family of the related malyngamides. For the most recent
and, see ref and references cited therein.
2 K. L. McPhail and W. H. Gerwick, J. Nat. Prod., 2003, 66,
132.
3 (a) C. B. Fryhle, P. G. Williard and C. M. Rybak, Tetrahedron Lett.,
1992, 33, 2327; (b) C. Mu¨ller, G. Voss and H. Gerlach, Liebigs
Ann. Chem., 1995, 673; (c) S. Sankaranarayanan, A. Sharma and
S. Chattopadhyay, Tetrahedron: Asymmetry, 1996, 7, 2639; (d) D. C.
Braddock and A. Matsuno, Synlett, 2004, 2521; (e) Y. Li, J. Chen and
X. P. Cao, Synthesis, 2006, 320; (f) M. A. Virolleaud, C. Menant, B.
Fenet and O. Piva, Tetrahedron Lett., 2006, 47, 5127.
4 (a) S. Suntornshashwej, K. Suwanborirux and M. Isobe, Tetrahedron,
2007, 63, 3217; (b) Y. Li, J. P. Feng, W. H. Wang, J. Chen and X. P. Cao,
J. Org. Chem., 2007, 72, 2344; (c) J. P. Feng, Z. F. Shi, Y. Li, J. T. Zhang,
X. L. Qi, J. Chen and X. P. Cao, J. Org. Chem., 2008, 73, 6873; (d) J.
Chen, Y. Li and X. P. Cao, Tetrahedron: Asymmetry, 2006, 17, 933;
(e) J. Chen, Z. F. Shi, L. Zhou, A. L. Xie and X. P. Cao, Tetrahedron,
2010, 66, 3499; (f) J. Chen, X. G. Fu;, L. Zhou, J. T. Zhang, X. L. Qi
and X. P. Cao, J. Org. Chem., 2009, 74, 4149.
5 (a) J. Orjala, D. Nagle and W. H. Gerwick, J. Nat. Prod., 1995, 58, 764;
(b) J. S. Todd and W. H. Gerwick, Tetrahedron Lett., 1995, 36, 7837;
(c) M. Wu, K. E. Milligan and W. H. Gerwick, Tetrahedron, 1997, 53,
15983; (d) Y. Kan, T. Fujita, H. Nagai, B. Sakamoto and Y. Hokama,
J. Nat. Prod., 1998, 61, 152.
6 G. P. J. Hareau, M. Koiwa, S. Hikichi and F. Sato, J. Am. Chem. Soc.,
1999, 121, 3640.
7 (a) S. L. Schreiber, J. Am. Chem. Soc., 1980, 102, 6163; (b) J. D. White,
U. M. Grether and C. S. Lee, Org. Synth., 2005, 82, 108.
8 (a) D. Basavaiah, A. J. Rao and T. Satyanarayana, Chem. Rev., 2003,
103, 811; (b) S. A. Rodgen and S. E. Schaus, Angew. Chem., 2006,
118, 5051; S. A. Rodgen and S. E. Schaus, Angew. Chem., Int. Ed.,
2006, 45, 4929; (c) Y. H. Zhu, R. Demange and P. Vogel, Tetrahedron:
Asymmetry, 2000, 11, 263.
9 (a) H. Jin, J. Uenishi, W. J. Chirst and Y. Kishi, J. Am. Chem. Soc.,
1986, 108, 5644; (b) K. Taki, M. Tagashira, T. Kuroda, K. Oshima, K.
Utimoto and H. Nozaki, J. Am. Chem. Soc., 1986, 108, 6048; (c) A.
Fu¨rstner, Chem. Rev., 1999, 99, 991; (d) D. L. Comins, A. C. Hiebel
and S. L. Huang, Org. Lett., 2001, 3, 769; (e) M. J. Rishel, K. K. D.
Amarasinghe, S. R. Dinn and B. F. Johnson, J. Org. Chem., 2009, 74,
4001.
10 (a) D. Dai, X. J. Wang and F. A. Etzkorn, J. Am. Chem. Soc., 2008,
130, 5396; (b) D. J. Pippel, C. M. Mapes and N. S. Mani, J. Org. Chem.,
2007, 72, 5828; (c) J. Liu, N. Ikemoto, D. Petrillo and J. D. Armstrong,
Tetrahedron Lett., 2002, 43, 8223.
11 (a) E. Klein and G. Ohloff, Tetrahedron, 1963, 19, 1091; (b) S.
Hatakeyama, H. Numata, K. Osanai and S. Takano, J. Org. Chem.,
1989, 54, 3515.
(4E,7S)-N -{(2R)-[(3R,4R)-4-Hydroxy-3-methyl-2-oxocyclo-
hex-1-enyl]-2-methoxyethyl}-7-methoxydodec-4-enamide
(1).
According to the preceding procedure for 2¢-epi-1, amide 2¢-epi-20
(15 mg, 0.03 mmol), TFA (0.6 mL) and water (0.15 mL), afforded
1 (8 mg, 69%) as a colorless oil: [a]2D0 -19 (c 0.06 in CHCl3); IR
(KBr, nmax/cm-1: 3411, 2828, 1677, 1142, 1093, 974; dH (400 MHz;
CDCl3; Me4Si) 0.89 (t, J 6.8, 3H, 12-H), 1.21 (d, J 7.2, 3H, CH3),
1.26–1.32 (m, 6H, 9-H, 10-H, and 11-H), 1.34–1.46 (m, 2H, 8-H),
2.18–2.31 (m, 6H, 2-H, 3-H, and 6-H), 2.64–2.72 (m, 3H, 3¢¢-H
and 5¢¢-H), 3.14–3.17 (m, 1H, 7-H), 3.28 (s, 3H, OCH3), 3.33 (s,
3H, OCH3), 3.40 (t, J 5.2, 2H, 1¢-H), 4.26–4.32 (m, 2H, 2¢-H and
4¢¢-H), 5.46–5.49 (m, 2H, 4-H and 5-H), 5.80 (br, 1H, NH), 6.67
(t, J 7.2, 1H, 6¢¢-H); dC (100 MHz; CDCl3; Me4Si) 11.1 (CH3),
14.5 (CH3, 12-C), 23.0 (CH2, 11-C), 25.4 (CH2, 9-C), 29.1 (CH2,
3-C), 32.4 (CH2, 10-C), 33.70 (CH2, 8-C), 33.78 (CH2, 5¢¢-C),
36.8 (CH2, 6-C), 36.9 (CH2, 2-C), 43.0 (CH2, 1¢-C), 48.0 (CH,
3¢¢-C), 56.9 (OCH3), 57.4 (OCH3), 71.6 (CH, 4¢¢-C), 77.0 (CH,
2¢-C), 81.1 (CH, 7-C), 127.9 (CH, 5-C), 131.2 (CH, 4-C), 136.3
(C, 1¢¢-C), 140.4 (CH, 6¢¢-C), 172.8 (CO, 1-C), 200.0 (CO, 2¢¢-C);
HRMS (ESI) m/z calcd for/C23H40NO5 [M + H]+ 410.2901,
found 410.2908.
12 L. Engman and D. Stern, J. Org. Chem., 1994, 59, 5179.
13 T. Ohshima, Y. J. Xu, R. Takita, S. Shimizu, D. F. Zhong and M.
Shibasaki, J. Am. Chem. Soc., 2002, 124, 14546.
14 S. Kirsch and T. Bach, Synthesis, 2003, 1827.
15 Y. Hirai, J. Watanabe, T. Nozaki, H. Yokoyama and S. Yamaguchi, J.
Org. Chem., 1997, 62, 776.
16 J. H. Billman and E. E. Parker, J. Am. Chem. Soc., 1943, 65,
761.
17 J. D. More and N. S. Finney, Org. Lett., 2002, 4, 3001.
18 I. Ohtani, T. Kusumi, Y. Kashman and H. Kakisawa, J. Am. Chem.
Soc., 1991, 113, 4092.
19 A. Fu¨rstner, M. Bonnekessel, J. T. Blank, K. Radkowski, G. Seidel,
F. Lacombe, B. Gabor and R. Mynott, Chem.–Eur. J., 2007, 13,
8762.
20 K. M. Brummond and S. Hong, J. Org. Chem., 2005, 70, 907.
21 M. A. Rahim, S. Matsumura and K. Toshima, Tetrahedron Lett., 2005,
46, 7307.
Acknowledgements
The authors are grateful to the National Basic Research Program
of China (973 Program, Grant No. 2010CB833203) and the
National Natural Science Foundation of China (Grant Nos.
20872055 and 20972060) for continuing financial support, the
specialized Research Fund for the Doctoral Program of Higher
Education (Grant No. 20090211110007), and 111 Project for
the continuing financial support. We also gratefully acknowledge
Professor Hak–Fun Chow, The Chinese University of Hong Kong,
for his helpful guidance in preparing the manuscript.
22 D. B. Dess and J. C. Martin, J. Org. Chem., 1983, 48, 4155.
23 (a) E. J. Corey and C. J. Helal, Angew. Chem., 1998, 110, 2092; E. J.
Corey and C. J. Helal, Angew. Chem., Int. Ed., 1998, 37, 1986; (b) R.
Balasubramanian, B. Raghavan, A. Bagaye, D. L. Sackett and R. A.
Fecik, J. Med. Chem., 2009, 52, 238.
24 W. Wang, T. Li and G. Attardo, J. Org. Chem., 1997, 62, 6598.
3824 | Org. Biomol. Chem., 2011, 9, 3817–3824
This journal is
The Royal Society of Chemistry 2011
©