Inorganic Chemistry
ARTICLE
(d, J = 4.8 Hz, 2H), 8.97 (d, J = 4.8 Hz, 2H), 8.67 (d, J = 4.8 Hz, 2H), 8.59
(d, J = 4.8 Hz, 2H), 8.47 (br s, 1H), 8.20 (d, J = 2.6 Hz, 2H), 7.98 (d, J =
8.4 Hz, 2H), 7.81 (br s, 3H), 7.77 (d, J = 8.5 Hz, 2H), 7.54 (d, J = 8.4 Hz,
2H), 7.51 (s, 2H), 7.47 (dd, J1 = 2.6 Hz, J2 = 8.5 Hz, 2H), 7.20 (d, J =
1.3 Hz, 1H), 7.16 (d, J = 1.3 Hz, 1H), 6.78 (d, J = 8.4 Hz, 4H), 6.45 (d, J =
8.4 Hz, 4H), 5.54 (s, 2H), 4.28 (m, 4H), 3.67 (t, J = 7.7 Hz, 2H), 1.99 (m,
4H), 1.2ꢀ1.5 (m, 60H), 1.01 (t, J = 7.7 Hz, 2H), 0.88 (m, 6H), 0.01
(s, 9H), ꢀ2.42 (s, 2H).
a schematic representation of the equilibrium process of 4Zn-
(7Zn)mþn4Zn, additional AFM images of 7Zn on mica. This
material is available free of charge via the Internet at http://
pubs.acs.org.
’ AUTHOR INFORMATION
Corresponding Author
*E-mail: jweiss@unistra.fr (J.W.), jwytko@unistra.fr (J.A.W.).
Synthesis of 6. To a suspension of 5 (95 mg, 57 μmol), 1,4-di-
phenylboronic acid (4.35 mg, 26 μmol), and K2CO3 (82 mg, 0.6 mmol)
in toluene (15 mL) were added water (0.3 mL) and methanol (2 mL).
The mixture was Ar flushed (15 min); then Pd(PPh3)4 (5 mol %) was
introduced. After degassing by bubbling the mixture with Ar for another
15 min, the reaction mixture was stirred at 60 ꢀC for 6 h under argon.
The organic phase was washed with saturated NH4Cl(aq) (2 ꢁ 50 mL)
and water (2 ꢁ 50 mL) and then dried over Na2SO4, filtered, and
evaporated to dryness to afford a dark residue. Purification by column
chromatography (Al2O3, C6H12/CH2Cl2, 1/1) was conducted in the
dark to yield the SEM-protected derivative 6 (57 mg, 17 μmol, 65%) as a
violet solid (second eluted product). The compound was used without
further purification for the deprotection step that follows. mp > 250 ꢀC.
1H NMR (CDCl3, 300 MHz): δ 9.18 (d, J = 4.5 Hz, 4H), 8.99 (d, J = 4.5
Hz, 4H), 8.87 (d, J = 4.5 Hz, 4H), 8.75 (d, J = 4.5 Hz, 4H), 8.55 (br s,
2H), 8.29 (d, J = 2.6 Hz, 4H), 8.20 (br s, 2H), 7.97 (d, J = 8.4 Hz, 4H),
7.88 (br s, 8H), 7.82 (d, J = 8.5 Hz, 4H), 7.48ꢀ7.56 (m, 12H), 7.22
(s, 2H), 7.19 (s, 2H), 6.83 (d, J = 8.2 Hz, 8H), 6.55 (d, J = 8.2 Hz, 8H),
5.59 (s, 4H), 4.29 (m, 8H), 3.71 (t, J = 8 Hz, 4H), 1.98 (m, 8H), 1.2ꢀ1.6
(m, 120H), 1.02 (t, J = 8 Hz, 8H), 0.87 (m, 12H), 0.03 (s, 18H), ꢀ2.70
(s, 4H).
Synthesis of 7. A solution of 6 (57 mg, 17 μmol) and (n-Bu4)NF
(0.1 mL of a 1 M solution in THF, 0.1 mmol) in 6 mL of THF was heated
at 50 ꢀC, in the dark, for 4 h and then poured into water. The precipitate
was washed with water and dissolved in CH2Cl2. The organic layer was
washed again with water. Solvent was removed under vacuum, and the
resulting residue was dried by azeotrope distillation. Purification by
column chromatography (Al2O3, C6H12/CH2Cl2, 1/1 to 0/1) was
conducted in the dark to yield 7 (25 mg, 8.2 μmol, 48%) as a glassy
purple solid (third eluted product). mp > 250 ꢀC. 1H NMR (CDCl3, 300
MHz): δ 9.18 (d, J = 4.5 Hz, 4H), 8.99 (d, J = 4.5 Hz, 4H), 8.86 (d, J = 4.5
Hz, 4H), 8.73 (d, J = 4.5 Hz, 4H), 8.51 (br s, 2H), 8.28 (d, J = 2.6 Hz,
4H), 8.18 (br s, 2H), 7.94 (d, J = 8.5 Hz, 4H), 7.84 (br s, 2H), 7.77 (d, J =
8.6 Hz, 4H), 7.66 (br s, 6H), 7.34ꢀ7.56 (m, 16H), 6.74 (d, J = 8.4 Hz,
8H), 6.53 (d, J = 8.4 Hz, 8H), 4.26 (m, 8H), 1.96 (m, 8H), 1.56 (m, 8H),
1.2ꢀ1.5 (m, 112H), 0.83 (m, 12 H), ꢀ2.34 (s, 4H). MS. Calcd for
Mþ: 3061. Found: 3063.650. Anal. Calcd for C212H226N16O4 þ 2H2O þ
2CH2Cl2: C, 78.61; H, 7.39; N, 6.38. Found: C, 78.34; H, 7.24; N, 6.00.
Synthesis of 7Zn. Zinc acetate (7.1 mg, 33 μmol) was added to a
solution of 7 (10 mg, 3.3 μmol) in 5 mL of THF. The mixture was stirred
at 50 ꢀC under argon. A solid precipitated immediately. After 2 h, the
mixture was poured into water. The precipitate was collected by
filtration and washed thoroughly with water and then with methanol
to afford 7Zn (8 mg, 2.5 μmol, 76%) as an insoluble green material. MS
MALDI TOF. Calcd for Mþ: 3183.62. Found: 3183.11.
Present Addresses
‡Department of Chemistry and Biochemistry, Arizona State
University, P. O. Box 871604, Tempe, AZ 85287-1604, USA.
^Department of Chemistry, University of Saskatchewan, Saska-
toon, SK S7N 5C9, Canada. On leave from the Faculty of Applied
Physics and Mathematics, Gdanꢀsk University of Technology,
80-233 Gdanꢀsk, Poland.
’ ACKNOWLEDGMENT
We thank Prof. Jean-Pierre Bucher for providing access to an
AFM instrument. M.K. thanks the Rꢀegion Alsace and the CNRS
for a Ph.D. fellowship. This work was supported by the CNRS
(Grant ACI-NX001), the Research Council of the Universitꢀe
Louis Pasteur (now called the Universitꢀe de Strasbourg), the
DFG Research Center for Functional Nanostructures (CFN)
Karlsruhe (Project C3.5), and a grant from the Ministry of
Science, Research and the Arts of Baden-W€urttemberg (Grant
No. Az. 7713.14-300). J.C. thanks the Karlsruhe School of Optics
and Photonics (KSOP) for financial support.
’ REFERENCES
(1) (a) Wytko, J. A.; Weiss, J. In N-4 Macrocyclic Metal Complexes;
Zagal, J. H., Bedioui, F., Dodelet, J. P., Eds.; Springer: Heidelberg,
Germany, 2006; pp 603ꢀ724. (b) Harvey, P. D. In The Porphyrin
Handbook II; Kadish, K. M., Smith, K. M., Guilard, R., Eds.; Academic
Press: San Diego, CA, 2003; Vol. 18, Chapter 113. (c) Wolffs, M.;
Hoeben, F. J. M.; Beckers, E. H. A.; Schenning, A. P. H. J.; Meijer, E. W. J.
Am. Chem. Soc. 2005, 127, 13484. (d) Morisue, M.; Yamatsu, S.; Haruta,
N.; Kobuke, Y. Chem.—Eur. J. 2005, 11, 5563. (e) Balaban, T. S. Acc.
Chem. Res. 2005, 38, 612. (f) Lo, P.-C.; Leng, X.; Ng, D. K. P. Coord.
Chem. Rev. 2007, 251, 2334.
(2) (a) Maeda, C.; Kamada, T.; Aratani, N.; Osuka, A. Coord. Chem.
Rev. 2007, 251, 2743. (b) Imamura, T.; Fukushima, K. Coord. Chem. Rev.
2000, 198, 133. (c) Balaban, T. S. In Handbook of Porphyrin Science,
Vol. 1; Kadish, K. M., Smith, K. M., Guilard, R., Eds.; World
Scientific: Singapore, 2010; Vol. 1, Chapter 3.
(3) See for example:(a) Ozawa, H.; Tanaka, H.; Kawao, M.; Uno, S.;
Nakazato, K. Chem. Commun. (Cambridge, U. K.) 2009, 7411. (b) Xiao,
S.; Myers, M.; Miao, Q.; Sanaur, S.; Pang, K.; Steigerwald, M. L.;
Nuckolls, C. Angew. Chem., Int. Ed. 2005, 44, 7390. (c) Zang, L.; Che,
Y.; Moore, J. S. Acc. Chem. Res. 2008, 41, 1596.
(4) Sugimoto, T.; Suzuki, T.; Shinkai, S.; Sada, K. J. Am. Chem. Soc.
2007, 129, 270.
(5) See for example: (a) Johnson, R. S.; Yamazaki, T.; Kovalenko, A.;
Fenniri, H. J. Am. Chem. Soc. 2007, 129, 5735. (b) Jonkheijm, P.;
Hoeben, F. J. M.; Kleppinger, R.; van Herrikhuyzen, J.; Schenning, A. P.
H. J.; Meijer, E. W. J. Am. Chem. Soc. 2003, 125, 15941.
(6) Li, G.; Wang, T.; Schultz, A.; Bhosale, S.; Lauer, M.; Espindola,
P.; Heinzeb, J.; Furhop, J.-H. Chem. Commun. (Cambridge, U. K.)
2004, 552.
(7) Kawao, M.; Ozawa, M.; Tanaka, H.; Ogawa, T. Thin Solid Films
2006, 499, 23.
(8) (a) Yeats, A. L.; Schwab, A. D.; Massare, B.; Johnston, D. E.;
Johnson, A. T.; de Paula, J. C.; Smith, W. F. J. Phys. Chem. C 2008,
’ ASSOCIATED CONTENT
S
Supporting Information. Figures showing molecular
b
modeling of dimer (3Zn)2 or (4Zn)2 without the alkyl chains,
stick models of conformations of the outꢀout dimer of 3Zn or
4Zn, selected atomic distances in the model of the inꢀin dimer
(3Zn)2, COSY and NOESY NMR spectra of (3Zn)2, time-
resolved fluorescence spectra and the corresponding DAES of
1
3Zn, absorption spectrum of 4Zn(7Zn)44Zn, H NMR spec-
trum of 7Zn in pyridine-d5 and of 4Zn(7Zn)74Zn in CDCl3,
6081
dx.doi.org/10.1021/ic2001255 |Inorg. Chem. 2011, 50, 6073–6082