Clemens Stueckler et al.
UPDATES
References
Experimental Section
[1] For homogeneous catalysts see: a) R. Noyori Angew.
Chem. 2002, 114, 2108–2123; Angew. Chem. Int. Ed.
2002, 41, 2008–2022; b) W. S. Knowles, Angew. Chem.
2002, 114, 2096–2107; Angew. Chem. Int. Ed. 2002, 41,
1998–2007.
[2] For organocatalysts see: a) J. W. Yang, M. T. Hechavar-
ria Fonseca, N. Vignola, B. List, Angew. Chem. 2005,
117, 110–112; Angew. Chem. Int. Ed. 2005, 44, 108–
110; b) S. G. Quellet, J. B. Tuttle, D. W. C. MacMillan,
J. Am. Chem. Soc. 2005, 127, 32–33.
General Remarks
TLC plates were run on silica gel Merck 60 (F254) and com-
pounds were visualized by spraying with Mo-reagent
[(NH4)6Mo7O24·4H2O (100 g/L), CeACHTUNGRTNE(UNG SO4)2·4H2O (4 g/L) in
H2SO4 (10%)] or by UV (254 nm). Silica gel 60 from Merck
was used for flash chromatography. GC-MS analyses were
performed on an HP 6890 Series GC system equipped with
a 5973 mass selective detector and a 7683 Series injector
using a (5% phenyl)-methylpolysiloxane capillary column
(HP-5MS, 30 mꢄ0.25 mm, 0.25 mm). GC-FID analyses were
carried out on a Varian 3800 using H2 as carrier gas
(14.5 psi). NMR measurements were done on a Bruker
Avance III 300 MHz NMR spectrometer. Chemical shifts
are reported relative to TMS (d=0.00) and coupling con-
stants (J) are given in Hz. Methyl 2-acetamidoacrylate (1a),
l-alanine methyl ester, ethoxyformyl chloride, N-aminopyri-
dinium iodide, dimethyl fumarate, silicic acid, l-aspartic acid
dimethyl ester hydrochloride, formyl chloride, acetyl chlo-
ride, propionyl chloride, butanoyl chloride, benzyl chloride
and phenylacetyl chloride were purchased from Aldrich.
D2O (99.8%) was from Armar chemicals.
[3] R. E. Williams, N. C. Bruce, Microbiology 2002, 148,
1607–1614.
[4] a) R. Stuermer, B. Hauer, M. Hall, K. Faber, Curr.
Opin. Chem. Biol. 2007, 11, 203–213; b) M. Hall, Y.
Yanto, A. S. Bommarius, ꢀin: The Encyclopedia of In-
dustrial Biotechnology: Bioprocess, Bioseparation, and
Cell Technology, (Ed.: M. Flickinger), Wiley, 2010,
pp 2234–2247; c) H. S. Toogood, J. M. Gardiner, N. S.
Scrutton, ChemCatChem 2010, 2, 892–914.
[5] O. Warburg, W. Christian, Biochem. Z. 1933, 266, 377–
411.
[6] For studies on the substrate-tolerance see: a) M. Hall,
C. Stueckler, W. Kroutil, P. Macheroux, K. Faber,
Angew. Chem. 2007, 119, 4008–4011; Angew. Chem.
Int. Ed. 2007, 46, 3934–3937; b) M. Hall, C. Stueckler,
H. Ehammer, E. Pointner, G. Oberdorfer, K. Gruber,
B. Hauer, R. Stuermer, W. Kroutil, P. Macheroux, K.
Faber, Adv. Synth. Catal. 2008, 350, 411–418; c) M.
Hall, C. Stueckler, B. Hauer, R. Stuermer, T. Friedrich,
M. Breuer, W. Kroutil, K. Faber, Eur. J. Org. Chem.
2008, 1511–1516; d) N. J. Mueller, C. Stueckler, B.
Hauer, N. Baudendistel, H. Housden, N. C. Bruce, K.
Faber, Adv. Synth. Catal. 2010, 352, 387–394; e) A.
Fryszkowska, H. Toogood, M. Sakuma, J. M. Gardiner,
G. M. Stephens, N. S. Scrutton, Adv. Synth. Catal. 2009,
351, 2976–2990; f) D. J. Bougioukou, S. Kille, A. Ta-
glieber, M. T. Reetz, Adv. Synth. Catal. 2009, 351,
3287–3305; g) J. F. Chaparro-Riggers, T. A. Rogers, E.
Vazquez-Figueroa, K. M. Polizzi, A. S. Bommarius,
Adv. Synth. Catal. 2007, 349, 1521–1531.
[7] For applications of OYEs to asymmetric synthesis see:
a) B. Kosjek, F. J. Fleitz, P. G. Dormer, J. T. Kuethe,
P. N. Devine, Tetrahedron: Asymmetry 2008, 19, 1403–
1406; b) C. Stueckler, M. Hall, H. Ehammer, E. Point-
ner, W. Kroutil, P. Macheroux, K. Faber Org. Lett,
2007, 9, 5409–5411; c) C. Stueckler, N. J. Mueller, C. K.
Winkler, S. M. Glueck, K. Gruber, G. Steinkellner K.
Faber, Dalton Trans. 2010, 39, 8472–8476; d) H. S. Too-
good, A. Fryszkowska, V. Hare, K. Fisher, A. Roujeini-
kova, D. Leys, J. M. Gardiner, G. M. Stephens, N. S.
Scrutton, Adv. Synth. Catal. 2008, 350, 2789–2803;
e) M. Utaka, S. Konishi, A. Mizuoka, T. Ohkubo, T.
Sakai, S. Tsuboi, A. Tekeda, J. Org. Chem. 1989, 54,
4989–4992; f) A. Mueller, B. Hauer, B. Rosche, Bio-
technol. Bioeng. 2007, 98, 22; g) C. Stueckler, C. K.
Winkler, M. Bonnekessel, K. Faber, Adv. Synth. Catal.
2010, 352, 2663–2666.
Source of Enzymes
12-Oxophytodienoate reductase isoenzymes OPR1 and
OPR3 from Lycopersicon esculentum and the OYE homo-
logue YqjM from Bacillus subtilis were overexpressed and
purified as reported.[6a,14,15] The cloning, purification and
characterisation of OYE isoenzymes from yeast (OYE1
from Saccharomyces pastorianus, OYE2 and OYE3 from
Saccharomyces cerevisiae) and nicotinamide-dependent cy-
clohexenone reductase (NCR) from Zymomonas mobilis
were performed according to literature methods.[6c,16]
General Procedure for the Enzymatic Bioreduction
of 1a–9a
An aliquot of enzyme (OYE1–3, OPR1, OPR3, YqjM, and
NCR, protein concentration in biotransformations 75–
125 mgmLÀ1) was added to a Tris-HCl buffer solution
(0.8 mL, 50 mM, pH 7.5) containing the substrate (10 mM)
and the cofactor NADH (15 mM). Substrates 8a and 9a
were solubilised by addition of t-BuOMe (v:v 20%).[7c] The
mixture was shaken at 308C and 120 rpm. After 24 h prod-
ucts were extracted with EtOAc (2ꢄ0.5 mL). The combined
organic phases were dried over Na2SO4 and analysed on
achiral GC to determine the conversion and on chiral GC to
determine the enantiomeric excess.
Supporting Information
Syntheses of substrates 2a–9a, syntheses of racemic refer-
ence materials rac-1b, rac-4b–9b, syntheses of chiral refer-
ence materials for (S)-1b, (S)-4b–9b, analytical procedures
for the determination of conversion, the determination of
enantiomeric excess and absolute configuration of products,
and NMR spectra are given in the Supporting Information.
[8] C. K. Winkler, C. Stueckler, N. J. Mueller, D. Pressnitz,
K. Faber, Eur. J. Org. Chem. 2010, 6354–6358.
1172
ꢃ 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Adv. Synth. Catal. 2011, 353, 1169 – 1173