Organometallics
COMMUNICATION
(5) Scollard, J. D.; Day, M.; Labinger, J. A.; Bercaw, J. E. Helv. Chim.
Acta 2001, 84, 3247.
(6) Johansson, L.; Ryan, O. B.; Rømming, C.; Tilset, M. Organome-
tallics 1998, 17, 3957.
Goldberg, K. I. J. Am. Chem. Soc. 2001, 123, 2576. (f) Pawlikowski, A. V.;
Getty, A. D.; Goldberg, K. I. J. Am. Chem. Soc. 2007, 129, 10382.
(g) Smythe, N. A.; Grice, K. A.; Williams, B. S.; Goldberg, K. I.
Organometallics 2009, 28, 277. (h) Crumpton-Bregel, D. M.; Goldberg,
K. I. J. Am. Chem. Soc. 2003, 125, 9442.
(25) In the more strongly coordinating solvent acetonitrile, complex
2C (solv = acetonitrile) was found to be more stable toward reductive
elimination than in acetone.
(7) (a) Lanci, M. P.; Remy, M. S.; Kaminsky, W.; Mayer, J. M.;
Sanford, M. S. J. Am. Chem. Soc. 2009, 131, 15618. (b) Lanci, M. P.;
Spettel, K. E.; Mayer, J. M. Submitted for publication .
(8) For an unusual recent example, see: Canty, A. J.; Gardiner, M. G.;
Jones, R. C.; Rodemann, T.; Sharma, M. J. Am. Chem. Soc. 2009, 131,
7236–7237.
(9) (a) Heiberg, H.; Johansson, L.; Gropen, O.; Ryan, O. B.; Swang,
O.; Tilset, M. J. Am. Chem. Soc. 2000, 122, 10831. (b) Owen, J. S.;
Labinger, J. A.; Bercaw, J. E. J. Am. Chem. Soc. 2006, 128, 2005.
(10) (a) Hill, G. S.; Puddephatt, R. J. Organometallics 1997, 16, 4522.
(b) Hill, G. S.; Yap, G. P. A.; Puddephatt, R. J. Organometallics 1999,
18, 1408.
(11) (a) van Asselt, R.; Rijnberg, E.; Elsevier, C. J. Organometallics
1994, 13, 706. (b) Moret, M.-E.; Chen, P. J. Am. Chem. Soc. 2009, 131,
5675.
(12) Grice, K. A.; Scheuermann, M. L.; Goldberg, K. I. Top.
Organomet. Chem. 2011, 503, 1.
(13) (a) Clark, H. C.; Manzer, L. E. Inorg. Chem. 1973, 12, 362.
(b) Brown, M. P.; Puddephatt, R. J.; Upton, C. E. E. J. Chem. Soc., Dalton
Trans. 1974, 2457. (c) Brown, M. P.; Puddephatt, R. J.; Upton, C. E. E.;
Lavington, S. W. J. Chem. Soc., Dalton Trans. 1974, 1613. (d) Procelewska,
J.; Zahl, A.; Liehr, G.; van Eldik, R.; Smythe, N. A.; Williams, B. S.;
Goldberg, K. I. Inorg. Chem. 2005, 44, 7732. (e) Ramirez, P.;
Contreras, R.; Valderrama, M.; Boys, D. J. Organomet. Chem. 2006,
691, 491. (f) Kloek, S. M.; Goldberg, K. I. J. Am. Chem. Soc. 2007,
129, 3460. (g) Luedtke, A. T.; Goldberg, K. I. Inorg. Chem. 2007, 46,
8496.
(26) Complexes 3A,B were stable in CD3NO2 over 24 h at 60 °C. In
CD2Cl2, these complexes underwent slow decomposition after 24 h at
50 °C; however, only traces of C2H6 were observed in either case.
(27) As measured, for instance, by the Gutmann donor number
(heat of complexation with SbCl5) or the MariaꢀGal scale (based on
complex formation with BF3): (a) Gutmann, V. The DonorꢀAcceptor
Approach to Molecular Interactions; Plenum Press: New York, 1978.
(b) Maria, P.-C.; Gal., J.-F. J. Phys. Chem. 1985, 89, 1296–1304
(dichloromethane (10) < nitromethane (37.6) < acetone (76.0)).
(28) On the basis of ref 6 and related preliminary electrochemical
studies: Lanci, M. P. Unpublished results.
(29) The concentration of [(DAB)Pt(CH3)2]+ is likely to be too low
to allow simple bimolecular disproportionation, as explained by Tilset
for a related system.6
(30) Seligson, A. L.; Trogler, W. C. J. Am. Chem. Soc. 1992, 114, 7085.
(14) Hughes, R. P.; Ward, A. J.; Rheingold, A. L.; Zakharov, L. N.
Can. J. Chem. 2003, 81, 1270.
(15) (a) Hartwig, J. F. Organotransition Metal Chemistry; University
Science Books: Sausalito, CA, 2010; p 901. (b) Frech, C. M.; Milstein, D.
J. Am. Chem. Soc. 2006, 128, 12434.
(16) Complexes 1AꢀD are known and were prepared as
discussed in: (a) Johansson, L.; Tilset, M.; Labinger, J. A.; Bercaw,
J. E. J. Am. Chem. Soc. 2000, 122, 10846. (b) Scollard, J. D.; Day, M.;
Labinger, J. A.; Bercaw, J. E. Helv. Chim. Acta 2001, 84, 3247. (c)
Johansson, L.; Ryan, O. B.; Romming, C.; Tilset, M. Organometallics
1998, 17, 3957. (d) Brown, M. P.; Puddephatt, R. J.; Upton, C. E. E.
J. Chem. Soc., Dalton Trans. 1974, 2457.
(17) See the Supporting Information for full details.
(18) An analogue of 2D without methyls on the diazabutadiene
backbone and with a triflate counterion has been reported.10b
(19) Complexes 2 are described as solvento complexes because they
likely contain a mixture of acetone-bound and water-bound complexes
on the basis of previous studies.7a,10b
(20) Fekl, U.; Kaminsky, W.; Goldberg, K. I. J. Am. Chem. Soc. 2001,
123, 6423.
(21) Puddephatt et al. have reported that a close analogue of
2D10b,18 is stable to reductive elimination, but they may not have
explored elevated temperatures. Their analogue is lacking methyl groups
on the diimine backbone and has a triflate rather than a solvent ligand.
(22) To test whether the difference between 2A,B and 2C,D could
be due to ion pairing or anion coordination, the decay of a solution of 2C
in acetone-d6 at 60 °C was monitored with and without 20 equiv of
NaOTf. Nearly identical rates were observed, indicating that the anion
does not play a major role. In addition, 2B generated in CD3NO2 with a
B(C6F5)4ꢀcounterion still did not produce C2H6 at 60 °C over 18 h.
(23) Similar trends were observed using the B3PW91 and M06
functionals.
(24) (a) Goldberg, K. I.; Yan, J. Y.; Winter, E. L. J. Am. Chem. Soc.
1994, 116, 1573. (b) Goldberg, K. I.; Yan, J. Y.; Breitung, E. M. J. Am.
Chem. Soc. 1995, 117, 6889. (c) Williams, B. S; Holland, A. W.; Goldberg,
K. I. J. Am. Chem. Soc. 1999, 121, 252. (d) Crumpton, D. M.;
Goldberg, K. I. J. Am. Chem. Soc. 2000, 122, 962. (e) Williams, B. S.;
3707
dx.doi.org/10.1021/om200508k |Organometallics 2011, 30, 3704–3707