2726
M. Nomura et al. / Journal of Organometallic Chemistry 696 (2011) 2720e2727
4.8. Cross-coupling reaction of 11 with 2-bromopyridine
Supplementary material
11 (0.0298 g, 0.061 mmol), 2-bromopyridine (0.060 ml,
0.63 mmol), [Pd(PPh3)4] (0.0107 g, 0.0093 mmol), Na2CO3 aq (5 ml,
c ¼ 5 mol dmꢀ3) were reacted in refluxing THF (40 ml) for 2 h. All
volatiles were removed under reduced pressure. The blue product
[CpCo(S2C2(Ph)(p-C6H4Py))] (14) was separated by HPLC. 12 was
obtained as a dark blue solid in 30% yield.
CCDC 808149 (11), 808150 (12), 808151 (13), 808152 (14),
808153 (7), 808154 (9); contain the supplementary crystallo-
graphic data for this paper. These data can be obtained free of
charge from The Cambridge Crystallographic Data Centre via www.
References
4.8.1. Spectroscopic data of [CpCo(S2C2(Ph)(p-C6H4Py))] (14)
Mass (EIþ, 70 eV) m/z (rel. intensity) 443 ([Mþ], 96), 188
([CpCoS2þ], 100), 124 ([CpCoþ], 42). 1H NMR (acetone-d6, 500 MHz,
[1] (a) L.J. Wright, Dalton Trans. (2006) 1821;
(b) J.R. Bleeke, Chem. Rev. 101 (2001) 1205.
[2] (a) G.N. Schrauzer, Acc. Chem. Res. 2 (1969) 72;
(b) J.A. McCleverty, Prog. Inorg. Chem. 10 (1968) 49.
[3] S. Boyde, C.D. Garner, J.A. Joule, D.J. Rowe, J. Chem. Soc. Chem. Commun. 800
(1987).
[4] Y.-H. Cui, W.Q. Tian, J.-K. Feng, Z.-Z. Liu, W.-Q. Li, THEOCHEM 810 (2007) 65.
[5] (a) A. Sugimori, T. Akiyama, M. Kajitani, T. Sugiyama, Bull. Chem. Soc. Jpn. 72
(1999) 879;
vs. TMS)
d
¼ 8.64 (ddd, J ¼ 4.8, 1.7, 1.0 Hz, 1H), 7.99 (t, J ¼ 2.1 Hz, 1H),
7.96 (t, J ¼ 2.1 Hz, 1H), 7.92 (dt, J ¼ 7.9, 1.3 Hz, 1H), 7.84 (dt, J ¼ 7.2,
1.7 Hz, 1H), 7.30e7.33 (m, 3H), 7.21e7.27 (m, 5H), 5.53 (s, 5H, Cp).
UVevis (CH2Cl2) lmax/nm (e) 602 (10900), 296 (48000). HR-Mass
(EIþ, 70 eV) Calcd. for C24H18CoNS2: 443.0212, Found: 443.0217.
(b) M. Nomura, Dalton Trans 40 (2011) 2112.
[6] (a) C. Takayama, M. Kajitani, T. Sugiyama, A. Sugimori, J. Organomet. Chem.
563 (1998) 161;
4.9. Microwave-enhanced reaction
(b) M. Nomura, A. Kusui, M. Kajitani, Organometallics 24 (2005) 2811.
[7] M. Nomura, T. Yagisawa, C. Takayama, T. Sugiyama, Y. Yokoyama, K. Shimizu,
A. Sugimori, M. Kajitani, J. Organomet. Chem. 611 (2000) 376.
[8] M. Nomura, H. Hatano, T. Fujita, Y. Eguchi, R. Abe, M. Yokoyama, C. Takayama,
T. Akiyama, A. Sugimori, M. Kajitani, J. Organomet. Chem. 689 (2004) 993.
[9] (a) M. Nomura, C. Takayama, G.C. Janairo, T. Sugiyama, Y. Yokoyama,
M. Kajitani, Organometallics 22 (2003) 195;
(b) M. Nomura, C. Takayama, G.C. Janairo, T. Sugiyama, Y. Yokoyama,
M. Kajitani, Organometallics 22 (2003) 195.
[10] M. Kajitani, G. Hagino, M. Tamada, T. Fujita, M. Sakurada, T. Akiyama,
A. Sugimori, J. Am. Chem. Soc. 118 (1996) 489.
A three-pronged microwave double cylindrical cooling reactor
with a reflux condenser was located in the waveguide. The reaction
mixtures were irradiated by continuous 2.45 GHz microwave
radiation with an IDX Inc. green-motif I microwave-type apparatus
with monomodal microwave radiation system [33]. The mono-
mode reactor provides a reliable homogeneity of the electric field
(wave focusing) and accurate control of temperature measured
with a fiber-optic probe.
[11] A. Sugimori, N. Tachiya, M. Kajitani, T. Akiyama, Organometallics 15 (1996)
5664.
[12] M. Nomura, H. Oguro, K. Maeshima, S. Iida, G. Hagino, S. Horikoshi,
A. Sugimori, M. Kajitani, J. Organomet. Chem. 695 (2010) 1613.
[13] M. Nomura, S. Iida, K. Seki, K. Kobayashi, S. Horikoshi, T. Sugiyama,
A. Sugimori, M. Kajitani, J. Organomet. Chem. 696 (2011) 1723.
[14] H. Nishihara, M. Okuno, N. Akimoto, N. Kogawa, K. Aramaki, J. Chem. Soc.
Dalton Trans. (1998) 2651.
[15] M. Nomura, K. Terada, A. Onozawa, Y. Mitome, T. Sugiyama, M. Kajitani, Chem.
Lett. 39 (2010) 208.
[16] N. Miyaura, A. Suzuki, Chem. Rev. 95 (1995) 2457.
[17] (a) F. Tisato, C. Bolzati, A. Duatti, G. Bandoli, F. Refosco, Inorg. Chem. 32 (1993)
2042;
(b) J.A. Kanney, B.C. Noll, M.R. DuBois, J. Am. Chem. Soc. 124 (2002) 9878.
[18] A. Sugimori, K. Suzuki, S. Nozawa, A. Soma, T. Sugiyama, M. Kajitani,
T. Akiyama, Chem. Lett. (1997) 513.
[19] (a) K. Mashima, H. Kaneyoshi, S. Kaneko, A. Mikami, K. Tani, A. Nakamura,
Organometallics 16 (1997) 1016;
(b) K. Mashima, S. Kaneko, K. Tani, Chem. Lett. 26 (1997) 347.
[20] (a) M. Nomura, M. Kanamori, N. Tateno, C. Fujita-Takayama, T. Sugiyama,
M. Kajitani, J. Organomet. Chem. 695 (2010) 2432;
4.10. CV measurements
All electrochemical measurements were performed under an
argon atmosphere. Solvents for electrochemical measurements
were dried by molecular sieve 4A before use. A platinum wire
served as a counter electrode, and the reference electrode Ag/AgCl
was corrected for junction potentials by being referenced internally
to the ferrocene/ferrocenium (Fc/Fcþ) couple. A stationary plat-
inum disk (1.6 mm in diameter) was used as a working electrode.
The Model CV-50W instrument from BAS Co. was used for cyclic
voltammetry (CV) measurements. CVs were measured in
1 mmol dmꢀ3 dichloromethane solutions of complexes containing
0.1 mol dmꢀ3 tetra-n-butylammonium perchlorate (TBAP) at 25 ꢁC.
(b) C. Takayama, K. Takeuchi, S. Ohkoshi, M. Kajitani, A. Sugimori, Organo-
metallics 18 (1999) 4032.
[21] (a) M. Nomura, T. Sasao, T. Sugiyama, M. kajitani, Inorg. Chim. Acta 363 (2010)
3647;
4.11. X-ray diffraction study
Single crystals obtained in this work were obtained by recrys-
tallization using vapor diffusion of n-hexane into the dichloro-
methane solution. A single crystal was mounted on the top of a thin
glass fiber. The measurement was made on a Rigaku Mercury
(b) M. Nomura, M. Fujii, K. Fukuda, T. Sugiyama, Y. Yokoyama, M. Kajitani,
J. Organomet. Chem. 690 (2005) 1627.
[22] F. Guyon, D. Lucas, I.V. Jourdain, M. Fourmigué, Y. Mugnier, H. Cattey,
Organometallics 20 (2001) 2421.
[23] A.G. Orpen, L. Brammer, F.H. Allen, O. Kennard, D.G. Watson, R. Taylor, J. Chem.
Soc. Dalton Trans. (1989) S1.
[24] D. Sellmann, M. Geck, F. Knoch, G. Ritter, J. Dengler, J. Am. Chem. Soc. 113
(1991) 3819.
[25] M. Nomura, S. Kondo, S. Yamashita, E. Suzuki, Y. Toyota, G.V. Alea, G.C. Janairo,
C. Fujita-Takayama, T. Sugiyama,M. Kajitani, J. Organomet. Chem. 695(2010)2366.
[26] (a) A.B. Tamayo, B.D. Alleyne, P.I. Djurovich, S. Lamansky, I. Tsyba, N.N. Ho,
R. Bau, M.E. Thompson, J. Am. Chem. Soc. 125 (2003) 7377;
(b) T. Sajoto, P.I. Djurovich, A.B. Tamayo, J. Oxgaard, W.A. Goddard,
M.E. Thompson, J. Am. Chem. Soc. 131 (2009) 9813.
diffractometer with graphite-monochromated MoKa radiation. The
data were corrected for Lorentz and polarization effects. The
structure was solved by direct methods and expanded using Fourier
techniques [34]. The non-hydrogen atoms were refined aniso-
tropically. Hydrogen atoms were refined using the riding model. All
the calculations were carried out using the Crystal Structure crys-
tallographic software package [35]. Crystallographic data are
summarized in Table 4.
[27] J. Brooks, Y. Babayan, S. Lamansky, P.I. Djurovich, I. Tsyba, R. Bau,
M.E. Thompson, Inorg. Chem. 41 (2002) 3055.
[28] P. Deplano, L. Pilia, D. Espa, M.L. Mercuri, A. Serpe, Coord. Chem. Rev. 254
(2010) 1434.
[29] D.R. Coulson, Inorg. Synth. 13 (1972) 121.
Acknowledgment
[30] T.S. Piper, F.A. Cotton, G. Wilkinson, J. Inorg. Nucl. Chem. 1 (1955) 313.
[31] X. Zheng, M.E. Mulcahy, D. Horinek, F. Galeotti, T.F. Magnera, J. Michl, J. Am.
Chem. Soc. 126 (2004) 4540.
We would like to thank Eriko Seki-Suzuki (Sophia University) for
polishing this manuscript.
[32] V. Madhu, S.K. Das, Inorg. Chem. 47 (2008) 5055.