3126
V. Khedkar et al. / Tetrahedron Letters 45 (2004) 3123–3126
4105–4108; Angew. Chem.,Int. Ed. 2001, 40, 3983–3985;
(d) Brunet, J.-J.;Neibecker, D. In Catalytic Heterofunc-
currently under way in order to allow the synthesis of
indoles, which are not substituted at the 2-position.
€
tionalization;Togni, A., Gr utzmacher, H., Eds.;Wiley–
VCH: Weinheim, 2001;(e) For a personal account see:
Beller, M.;Breindl, C.;Eichberger, M.;Hartung, C. G.;
Seayad, J.;Thiel, O. R.;Tillack, A.;Trauthwein, H.
Synlett 2002, 1579–1594.
Acknowledgements
7. (a) Hartung, C. G.;Tillack, A.;Trauthwein, H.;Beller, M.
J. Org. Chem. 2001, 66, 6339–6343;(b) Tillack, A.;Garcia
Castro, I.;Hartung, C. G.;Beller, M. Angew. Chem. 2002,
114, 2646–2648; Angew. Chem.,Int. Ed. 2002, 41, 2541–
2543;(c) Garcia Castro, I.;Tillack, A.;Hartung, C. G.;
Beller, M. Tetrahedron Lett. 2003, 44, 3217–3221;(d)
Tillack, A.;Jiao, H.;Garcia Castro, I.;Hartung, C. G.;
Beller, M. Chem. Eur. J. 2004, in press.
This work has been supported by the State of Meck-
lenburg-Vorpommern. In addition financial support
€
from the BMBF (Bundesministerium fur Bildung und
Forschung) and the VCI are gratefully acknowledged.
We thank Mrs. C. Mewes, Mrs. H. Baudisch, Mrs. A.
Lehmann, and Mrs. S. Buchholz (all IfOK) for their
excellent technical and analytical support.
8. With regard to the mechanism it is important to note that
we cannot exclude nucleophilic substitution taking partly
place at the stage of the aryl hydrazone or chloro-
alkylalkyne.
References and notes
9. Duff, A. W.;Kamarudin, R. A.;Lappert, M. F.;Norton,
R. J. J. Chem. Soc.,Dalton Trans. 1986, 489–498.
10. Khedkar, V.;Tillack, A.;Beller, M. Org. Lett. 2003, 5,
4767–4770.
1. (a) Campos, K. R.;Woo, J. C. S.;Lee, S.;Tillyer, R. D.
Org. Lett. 2004, 6, 79–82;(b) Hong, K. B.;Lee, C. W.;
Yum, E. K. Tetrahedron Lett. 2004, 45, 693–697;(c)
€
Kohling, P.;Schmidt, A. M.;Eilbracht, P. Org. Lett. 2003,
11. For reviews on the use of this complex see: (a) Rosenthal,
U.;Burlakov, V. V.;Arndt, P.;Baumann, W.;Spannen-
berg, A. Organometallics 2003, 22, 884–900;(b) Rosenthal,
U.;Burlakov, V. V. In Titanium and Zirconium in Organic
Synthesis;Marek, I., Ed.;Wiley–VCH: New York/Wein-
heim, 2002;pp 355–389. The so-called Rosenthal catalysts
are commercially available from Fluka.
5, 3213–3216;(d) Cacchi, S.;Fabrizi, G.;Parisi, L. M.
Org. Lett. 2003, 5, 3843–3846;(e) Siebeneicher, H.;
Bytschkov, I.;Doye, S. Angew. Chem. 2003, 115, 3151–
3153; Angew. Chem.,Int. Ed. 2003, 42, 3042–3044;(f)
Onitsuka, K.;Suzuki, S.;Takahashi, S. Tetrahedron Lett.
2002, 43, 6197–6199;(g) Rutherford, J. F.;Rainka, M. P.;
Buchwald, S. L. J. Am. Chem. Soc. 2002, 124, 15168–
15169;(h) Tokunaga, M.;Ota, M.;Haga, M.;Wakatsuki,
Y. Tetrahedron Lett. 2001, 42, 3865–3868;(i) Gribble, G.
W. J. Chem. Soc.,Perkin Trans. 1 2000, 1045–1075;(j)
Verspui, G.;Elbertse, G.;Sheldon, F. A.;Hacking, M. A.
P. J.;Sheldon, R. A. Chem. Commun. 2000, 1363–1364;(k)
Beller, M.;Breindl, C.;Riermeier, T. H.;Eichberger, M.;
Trauthwein, H. Angew. Chem. 1998, 110, 3571–3573;
Angew. Chem.,Int. Ed. 1998, 37, 3389–3391.
12. Typical reaction procedure: (Table 2, entry 2): In an Ace-
pressure tube under an argon atmosphere a solution of
catalyst 1 in 2 mL toluene was added to a mixture of
110 lL (113 mg, 1.1 mmol) 1-chloro-4-pentyne and 190 lL
(191 mg, 1.4 mmol) N-methyl-N-(4-tolyl)hydrazine. The
reaction mixture was heated at 100 °C for 24 h. During
this time the corresponding 2-(1,2,5-trimethyl-1H-indol-3-
yl)ethylamine hydrochloride precipitated. The mixture was
diluted with 5 mL hexane and the precipitate was filtered
off. Yield 170 mg (65%). For isolation of the free 2-(1,2,5-
trimethyl-1H-indol-3-yl)ethylamine, the hydrochloride
was dissolved in 20 mL water and NaOH was added until
the solution reached a pH of 9. Then 20 mL CH2Cl2 were
added and the organic layer was separated. The aqueous
phase was washed twice with 10 mL CH2Cl2 and the
combined organic phases were dried over anhydrous
MgSO4. After evaporation of the solvent 2-(1,2,5-tri-
methyl-1H-indole-3-yl)ethylamine was obtained as brown
oil. Yield 133 mg (60%). 1H NMR (400 MHz, CDCl3):
d ¼ 7:29 (s, 1H), 7.10 (d, J ¼ 8:3 Hz, 1H), 6.95 (d,
J ¼ 8:3 Hz, 1H), 3.57 (s, 3H), 2.91 (t, J ¼ 6:4 Hz, 2H),
2.82 (t, J ¼ 6:4 Hz, 2H), 2.43 (s, 3H), 2.32 (s, 3H), 1.32 (bs,
2H). 13C NMR (100 MHz, CDCl3): d ¼ 134:9, 133.5,
127.9, 127.7, 121.9, 117.6, 108.1, 107.7, 42.8, 29.3, 28.5,
21.3, 10.2. MS (EI, 70 eV): m=z (rel. intensity) ¼ 202 (16,
MþÅ), 172 (100), 157 (8), 128 (3), 115 (6), 91 (3), 77 (2), 51
(2), 30 (6). IR (neat, cmꢀ1): 3340, 3250, 3161, 1577, 1462,
1373, 785. HRMS Calcd. for C13H18N2: 202.14700.
Found: 202.14733. All compounds were characterized by
1H NMR, 13C NMR, MS, and IR spectroscopy. New
compounds were further characterized by HRMS (high-
resolution mass spectrometry).
2. (a) Hibino, S.;Choshi, T. Nat. Prod. Rep. 2002, 19, 148–
180, and earlier reviews in this series;(b) Szantay, C. Pure
Appl. Chem. 1990, 62, 1299–1302.
3. For reviews see: (a) Robinson, B. The Fischer Indole
Synthesis;John Wiley & Sons: Chichester, 1982;(b)
Hughes, D. L. Org. Prep. Proced. Int. 1993, 25, 607–623.
4. (a) Street, L. J.;Baker, R.;Castro, J. L.;Chambers, M. S.;
Guiblin, A. R.;Hobbs, S. C.;Matassa, V. G.;Reeve, A. J.;
Beer, M. S.;Middlemiss, D. N. J. Med. Chem. 1993, 36,
1529–1538;(b) Castro, J. L.;Matassa, V. G. Tetrahedron
Lett. 1993, 34, 4705–4708;(c) Chen, C.;Senanayake,
C. H.;Bill, T. J.;Larsen, R. D.;Verhoeven, T. R.;Reider,
P. J. J. Org. Chem. 1994, 59, 3738–3741;(d) Simeone, J.;
Bugianesi, R. L.;Ponpipom, M. M.;Goulet, M. T.;
Levorse, M. S.;Desai, R. C. Tetrahedron Lett. 2001, 42,
6459–6461;(e) Gorohovsky, S.;Meir, S.;Shkoulev, V.;
Byk, G.;Gellerman, G. Synlett 2003, 1411–1414.
5. Cao, C.;Shi, Y.;Odom, A. L. Org. Lett. 2002, 4, 2853–
2856.
€
6. For reviews see: (a) Muller, T. E.;Beller, M. Chem. Rev.
1998, 98, 675–703;(b) Seayad, J.;Tillack, A.;Hartung, C.
G.;Beller, M. Adv. Synth. Catal. 2002, 344, 795–813;(c)
€
Nobis, M.;Drießen-H olscher, B. Angew. Chem. 2001, 113,