SUPRAMOLECULAR CHEMISTRY
61
cucurbit[6]uril.” ACS Appl. Mater. Interfaces 2020, 12,
38768-38777; c) Roy, I.; Limketkai, B.; Botros, Y. Y.;
Stoddart, J. F., “Cyclodextrin metal-organic frameworks:
From the research laboratory to the marketplace.” Acc.
Chem. Res. 2020, 53, 2762; d) Hong, Y.; Thirion, D.;
Subramanian, S.; Yoo, M.; Choi, H.; Kim, H. Y.; Stoddart,
J. F.; Yavuz, C. T., “Precious metal recovery from electro-
nic waste by a porous porphyrin polymer.” Proc. Natl.
Acad. Sci. U. S. A. 2020, 117, 16174-16180; e) Kassem, S.;
van Leeuwen, T.; Lubbe, A. S.; Wilson, M. R.; Feringa, B. L.;
Leigh, D. A., “Artificial molecular motors.” Chem. Soc. Rev.
2017, 46, 2592-2621; f) Si, W.; Xin, P.; Li, Z.-T.; Hou, J.-L.,
“Tubular unimolecular transmembrane channels:
Construction strategy and transport activities.” Acc.
Chem. Res. 2015, 48, 1612-1619; g) Moyer, B. A.;
Custelcean, R.; Hay, B. P.; Sessler, J. L.; Bowman-James,
K.; Day, V. W.; Kang, S.-O., “A case for molecular recogni-
tion in nuclear separations: Sulfate separation from
nuclear wastes.” Inorg. Chem. 2013, 52, 3473-3490; h)
Issaq, H. J., “The multimodal cyclodextrin bonded sta-
tionary phases for high performance liquid chromato-
graphy.” J. Liq. Chromatogr. 1988, 11, 2131-2146; i)
(accessed May 5, 2020); j) Deng, C.-L.; Murkli, S. L.;
Isaacs, L. D., “Supramolecular hosts as in vivo sequestra-
tion agents for pharmaceuticals and toxins.” Chem. Soc.
Rev. 2020, 49, 7516-7532.
[7]uril.Guest pair with an attomolar dissociation con-
stant.” Angew. Chem. Int. Ed. 2014, 53, 988-993.
[10] a) Ko YH, Kim E, Hwang I, et al. Supramolecular assem-
blies built with host-stabilized charge-transfer
interactions. Chem. Commun. 2007, 1305–1315; b)
Sindelar, V.; Silvi, S.; Parker, S. E.; Sobransingh, D.; Kaifer,
A. E., “Proton and electron transfer control of the posi-
tion of cucurbit[n]uril wheels in pseudorotaxanes.” Adv.
Funct. Mat. 2007, 17, 694-701; c) Isaacs, L., “Stimuli
responsive systems constructed using cucurbit[n]uril-
type molecular containers.” Acc. Chem. Res. 2014, 47,
2052-2062; d) Del Barrio, J.; Horton, P.; Lairez, D.; Lloyd,
G.; Toprakcioglu, C.; Scherman, O., “Photocontrol over
cucurbit[8]uril complexes: Stoichiometry and supramo-
lecular polymers.” J. Am. Chem. Soc. 2013, 135, 11760-
[11] a) Dsouza R, Hennig A, Nau W. Supramolecular tandem
enzyme assays. Chem. Eur. J. 2012, 18, 3444–3459; b)
Lee, D.-W.; Park, K.; Banerjee, M.; Ha, S.; Lee, T.; Suh, K.;
Paul, S.; Jung, H.; Kim, J.; Selvapalam, N.; Ryu, S.; Kim, K.,
“Supramolecular fishing for plasma membrane proteins
using an ultrastable synthetic host-guest binding pair.”
Nat. Chem. 2011, 3, 154-159; c) Li, W.; Bockus, A. T.;
Vinciguerra, B.; Isaacs, L.; Urbach, A. R., “Predictive recog-
nition of native proteins by cucurbit[7]uril in a complex
mixture.” Chem. Commun. 2016, 52, 8537-8540; d) Liu, J.;
Lan, Y.; Yu, Z.; Tan, C. S. Y.; Parker, R. M.; Abell, C.;
Scherman, O. A., “Cucurbit[n]uril-based microcapsules
self-assembled within microfluidic droplets: A versatile
approach for supramolecular architectures and materi-
als.” Acc. Chem. Res. 2017, 50, 208-217; e) McCune, J. A.;
Mommer, S.; Parkins, C. C.; Scherman, O. A., “Design
principles for aqueous interactive materials: Lessons
from small molecules and stimuli-responsive systems.”
Adv. Mater. 2020, 32, 1906890; f) Tian, J.; Chen, L.; Zhang,
D.-W.; Liu, Y.; Li, Z.-T., “Supramolecular organic frame-
works: Engineering periodicity in water through host-
guest chemistry.” Chem. Commun. 2016, 52, 6351-6362;
g) Dang, D. T.; Nguyen, H. D.; Merkx, M.; Brunsveld, L.,
“Supramolecular control of enzyme activity through
cucurbit[8]uril-mediated dimerization.” Angew. Chem.,
Int. Ed. 2013, 52, 2915-2919; h) Chen, Y.; Zhang, Y.-M.;
Liu, Y., “Molecular selective binding and nano-
fabrication of cucurbituril/cyclodextrin pairs.” Isr.
J. Chem. 2011, 51, 515-524; i) Liu, Y.-H.; Zhang, Y.-M.;
Yu, H.-J.; Liu, Y., “Cucurbituril-based biomacromolecular
assemblies.” Angew. Chem. Int. Ed. 2021, 60, 3870-3880.
[12] a) Stancl M, Hodan M, Sindelar V. Glycoluril trimers:
selective synthesis and supramolecular properties. Org.
Lett. 2009, 11, 4184–4187; b) Stancl, M.; Gilberg, L.;
Ustrnul, L.; Necas, M.; Sindelar, V., “Synthesis and supra-
molecular properties of glycoluril tetramer.” Supramol.
Chem. 2014, 26, 168-172; c) Mao, D.; Liang, Y.; Liu, Y.;
Zhou, X.; Ma, J.; Jiang, B.; Liu, J.; Ma, D., “Acid-labile
acyclic cucurbit[n]uril molecular containers for con-
trolled release.” Angew. Chem. Int. Ed. 2017, 41, 12614-
12618; d) Prabodh, A.; Bauer, D.; Kubik, S.; Rebmann, P.;
Klaerner, F. G.; Schrader, T.; Delarue Bizzini, L.; Mayor, M.;
Biedermann, F., “Chirality sensing of terpenes, steroids,
amino acids, peptides and drugs with acyclic cucurbit[n]
[5] a) Stella VJ, Rajewski RA. Cyclodextrins: their future in
drug formulation and delivery. Pharm Res. 1997, 14,
556–567; b) Stella, V. J.; Rao, V. M.; Zannou, E. A.; Zia, V.,
“Mechanisms of drug release from cyclodextrin com-
plexes.” Adv. Drug Delivery Rev. 1999, 36, 3-16.
[6] Bom A, Bradley M, Cameron K, et al. A novel concept of
reversing neuromuscular block: chemical encapsulation
of rocuronium bromide by a cyclodextrin-based syn-
thetic host. Angew. Chem. Int. Ed. 2002, 41, 265–270.
[7] a) Freeman WA, Mock WL, Shih N-Y. Cucurbituril. J. Am.
Chem. Soc. 1981, 103, 7367–7368; b) Kim, J.; Jung, I.-S.;
Kim, S.-Y.; Lee, E.; Kang, J.-K.; Sakamoto, S.; Yamaguchi,
K.; Kim, K., “New cucurbituril homologues: Syntheses,
isolation, characterization, and x-ray crystal structures
of cucurbit[n]uril (n = 5, 7, and 8).” J. Am. Chem. Soc.
2000, 122, 540-541; c) Day, A. I.; Arnold, A. P.; Blanch,
R. J.; Snushall, B., “Controlling factors in the synthesis of
cucurbituril and its homologues.” J. Org. Chem. 2001, 66,
8094-8100.
[8] Lee JW, Samal S, Selvapalam N, et al. Cucurbituril homo-
logues and derivatives: new opportunities in supramo-
lecular chemistry. Acc. Chem. Res. 2003, 36, 621–630.
[9] a) Liu S, Ruspic C, Mukhopadhyay P, et al. The
Cucurbit[n]uril Family: Prime Components for
Self-Sorting Systems. J. Am. Chem. Soc. 2005, 127,
15959–15967; b) Rekharsky, M. V.; Mori, T.; Yang, C.; Ko,
Y. H.; Selvapalam, N.; Kim, H.; Sobransingh, D.; Kaifer,
A. E.; Liu, S.; Isaacs, L.; Chen, W.; Moghaddam, S.; Gilson,
M. K.; Kim, K.; Inoue, Y., “A synthetic host-guest system
achieves avidin-biotin affinity by overcoming enthalpy-
entropy compensation.” Proc. Natl. Acad. Sci. U. S. A.
2007, 104, 20737-20742; c) Cao, L.; Sekutor, M.; Zavalij,
P. Y.; Mlinaric-Majerski, K.; Glaser, R.; Isaacs, L., “Cucurbit