Journal of the American Chemical Society
COMMUNICATION
1 NaCl fibers (Figure S14) shows a strong peak at d100 = 19.98 Å
(2) (a) Hughes, A. D.; Glenn, I. C.; Patrick, A. D.; Ellington, A.;
Anslyn, E. V. Chem.—Eur. J. 2008, 14, 1822. (b) Che, Y. K.; Yang, X. M.;
Loser, S.; Zang, L. Nano Lett. 2008, 8, 2219. (c) Yin, M.; Shen, J.; Pisula,
W.; Liang, M.; Zhi, L.; Mullen, K. J. Am. Chem. Soc. 2009, 131, 14618.
(d) Kaucher, M. S.; Peterca, M.; Dulcey, A. E.; Kim, A. J.; Vinogradov,
S. A.; Hammer, D. A.; Heiney, P. A.; Percec, V. J. Am. Chem. Soc. 2007,
129, 11698. (e) Reches, M.; Gazit, E. Science 2003, 300, 625. (f) Hill,
J. P.; Jin, W.; Kosaka, A.; Fukushima, T.; Ichihara, H.; Shimomura, T.;
Ito, K.; Hashizume, T.; Ishii, N.; Aida, T. Science 2004, 304, 1481.
(g) Balakrishnan, K.; Datar, A.; Zhang, W.; Yang, X.; Naddo, T.; Huang,
J.; Zuo, J.; Yen, M.; Moore, J. S.; Zang, L. J. Am. Chem. Soc. 2006,
128, 6576. (h) Ste-pieꢀn, M.; Donnio, B.; Sessler, J. Angew. Chem., Int. Ed.
2007, 46, 1431. (i) Chen, Y. L.; Zhu, B.; Zhang, F.; Han, Y.; Bo, Z. S.
Angew. Chem., Int. Ed. 2008, 47, 6015. (j) Xu, Y. X.; Zhao, X.; Jiang, X. K.;
Li, Z. T. Chem. Commun. 2009, 4212. (k) Hisaki, I.; Shigemitsu, H.;
Sakamoto, Y.; Hasegawa, Y.; Okajima, Y.; Nakano, K.; Tohnai, N.;
Miyata, M. Angew. Chem., Int. Ed. 2009, 48, 5465. (l) Fischer, L.;
Decossas, M.; Briand, J. P.; Didierjean, C.; Guichard, G. Angew. Chem.,
Int. Ed. 2009, 48, 1625. (m) Raghavender, U. S.; Kantharaju; Aravinda, S.;
Shamala, N.; Balaram, P. J. Am. Chem. Soc. 2010, 132, 1075.
(3) (a) Ghosh, S.; Mukherjee, A.; Sadler, P. J.; Verma, S. Angew.
Chem., Int. Ed. 2008, 47, 2217. (b) Davis, J. T. Angew. Chem., Int. Ed.
2004, 43, 668. (c) Garciaa-Arriaga, M.; Hobley, G.; Rivera, J. M. J. Am.
Chem. Soc. 2008, 130, 10492. (d) Gonzꢀalez-Rodríguez, D.; Dongen, J. L.
J. v.; Lutz, M.; Spek, A. L.; Schenning, A. P. H. J.; Meijer, E. W. Nat.
Chem. 2009, 1, 151. (e) Gallant, A. J.; MacLachlan, M. J. Angew. Chem.,
Int. Ed. 2003, 42, 5307. (f) Akine, S.; Utsuno, F.; Nabeshima, T. Chem.
Commun. 2010, 46, 1029. (g) Yamamura, M.; Sasaki, M.; Kyotani, M.;
Orita, H.; Nabeshima, T. Chem.—Eur. J. 2010, 16, 10638. (h) Hui,
J. K. H.; Yu, Z.; MacLachlan, M. J. Angew. Chem., Int. Ed. 2007, 46, 7980.
(i) Wang, Z.; Medforth, C. J.; Shelnutt, J. A. J. Am. Chem. Soc. 2004,
126, 15954. (j) Shirakawa, M.; Fujita, N.; Shinkai, S. J. Am. Chem. Soc.
2005, 127, 4164. (k) Koepf, M.; Wytko, J. A.; Bucher, J.-P.; Weiss, J. J.
Am. Chem. Soc. 2008, 130, 9994. (l) Frischmann, P. D.; Guieu, S.;
Tabeshi, R.; MacLachlan, M. J. J. Am. Chem. Soc. 2010, 132, 7668. (m)
Iavicoli, P. et al J. Am. Chem. Soc. 2010, 132, 9350.
3
(2θ = 4.42°), along with two deconvoluted weaker peaks at
d110 = 10.91 Å and d200 = 9.75 Å, possibly indicating a hexagonal
lattice with an intercolumnar distance of dhex = 23.07 Å.
Compared to the overall radius of 1.18 nm, inclusive of
0.68 nm from its pentamer core and 0.50 nm from the benzyl
side chains for the 1D columns formed from 1 (Figure 3b), the
overlap among the 1D columns is ∼0.05 nm, suggesting that the
exterior benzyl side chains in the twist packing mode (Figure 3b)
do not penetrate into each other, which is consistent with the rigid
nature of benzyl groups. Assuming formation of a hexagonal lattice,
the calculated intercolumnar distances of 2.24À2.44 nm indicate an
overlap of <0.12 nm for the 1 LiBr, 1 NaBr, and 1 KCl fibers
3
3
3
(Figures S13ÀS15) and no overlap for the1 LiBPh4 and 1 NaBPh4
3
3
fibers (Figure S10). Similar XRD analyses (Figures S10ÀS17) on
other fibers formed from 1 or 2 (Table 1) give inconclusive
information on the intercolumnar arrangement of 1D columns.
In summary, we have developed an entirely new class of
cation-binding foldamer-based pentameric macrocycles capable
of high-affinity recognition of metal ions and self-assembling into
tunable 1D columnar aggregates that further associate to form
unusual cation-containing or ion-pair-induced fibers of varying
shapes and sizes, controllable by alkali metal ions or their halide
salts. The modular nature of the described macrocycles also enables
easy modification of the outer surfaces, and, in combination with
other monomeric building blocks recently reported by us,4e further
allows the interior properties to be finely tuned with respect to both
ion-binding affinity and selectivity. Accordingly, an enriched family
of closely related, appropriately designed structural variations can be
envisioned for some interesting applications.1À3,4e,6
’ ASSOCIATED CONTENT
(4) This is an intrinsic feature of certain classes of foldamer
molecules: (a) Qin, B.; Chen, X. Y.; Fang, X.; Shu, Y. Y.; Yip, Y. K.;
Yan, Y.; Pan, S. Y.; Ong, W. Q.; Ren, C. L.; Su, H. B.; Zeng, H. Q.
Org. Lett. 2008, 10, 5127. (b) Yan, Y.; Qin, B.; Shu, Y. Y.; Chen, X. Y.;
Yip, Y. K.; Zhang, D. W.; Su, H. B.; Zeng, H. Q. Org. Lett. 2009, 11, 1201.
(c) Yan, Y.; Qin, B.; Ren, C. L.; Chen, X. Y.; Yip, Y. K.; Ye, R. J.; Zhang,
D. W.; Su, H. B.; Zeng, H. Q. J. Am. Chem. Soc. 2010, 132, 5869.
(d) Zhang, Z.; Xia, B.; Han, C.; Yu, Y.; Huang, F. Org. Lett. 2010,
12, 3285. (e) Qin, B.; Ren, C. L.; Ye, R. J.; Sun, C.; Chiad, K.; Chen, X. Y.;
Li, Z.; Xue, F.; Su, H. B.; Chass, G. A.; Zeng, H. Q. J. Am. Chem. Soc.
2010, 132, 9564. (f) Guieu, S.; Crane, A. K.; MacLachlan, M. J. Chem.
Commun. 2011, 47, 1169. (g) Qin, B.; Ong, W. Q.; Ye, R. J.; Du, Z. Y.;
Chen, X. Y.; Yan, Y.; Zhang, K.; Su, H. B.; Zeng, H. Q. Chem. Commun.
2011, 47, 5419. (h) Qin, B.; Sun, C.; Liu, Y.; Shen, J.; Ye, R. J.; Zhu, J.;
Duan, X.-F.; Zeng, H. Q. Org. Lett. 2011, 13, 2270.
S
Supporting Information. Procedures and characteriza-
b
tion data. This material is available free of charge via the Internet
’ AUTHOR INFORMATION
Corresponding Author
’ ACKNOWLEDGMENT
We thank National University of Singapore AcRF Tier 1
Grants (R-143-000-375-112 and R-143-000-398-112 to H.Z.).
(5) (a) Bajaj, A. V.; Poonia, N. S. Coord. Chem. Rev. 1988, 87, 55.
(b) See the Supporting Information. (c) Moore, S. S.; Tarnowski, T. L.;
Newcomb, M.; Cram, D. J. J. Am. Chem. Soc. 1977, 99, 6398.(d) As
shown in Figure S9, computationally, cations are located within the
cavity and essentially coplanar with the pentameric backbone of 1 or 2,
making it unlikely for one pentamer molecule to simutaneouly bind two
cations due to the repulsion between the two cations in proximity. (e)
The partially refined structure of pentamer 1 does reveal five-fold
symmetry and a nearly planar backbone in 1 (Figure S1).
(6) (a) Zhu, Y. Y.; Li, C.; Li, G. Y.; Jiang, X. K.; Li, Z. T. J. Org. Chem.
2008, 73, 1745. (b) Sanford, A. R.; Yuan, L.; Feng, W.; Yamato, K.;
Flowersb, R. A.; Gong, B. Chem. Commun. 2005, 4720. (c) Helsel, A. J.;
Brown, A. L.; Yamato, K.; Feng, W.; Yuan, L. H.; Clements, A. J.;
Harding, S. V.; Szabo, G.; Shao, Z. F.; Gong, B. J. Am. Chem. Soc. 2008,
130, 15784. (d) Shirude, P. S.;Gillies, E. R.; Ladame, S.; Godde, F.; Shin-Ya,
K.; Huc, I.; Balasubramanian, S. J. Am. Chem. Soc. 2007, 129, 11890.
’ REFERENCES
(1) (a) Bong, D. T.; Clark, T. D.; Granja, J. R.; Ghadiri, M. R. Angew.
Chem., Int. Ed. 2001, 40, 988. (b) Schenning, A. P. H. J.; Meijer, E. W.
Chem. Commun. 2005, 3245. (c) Wu, J.; Pisula, W.; Mullen, K. Chem.
Rev. 2007, 107, 718. (d) Zang, L.; Che, Y.; Moore, J. S. Acc. Chem. Res.
2008, 41, 1596. (e) Palmer, L. C.; Stupp, S. I. Acc. Chem. Res. 2008,
41, 1674. (f) Zhao, Y. S.; Fu, H. B.; Peng, A. D.; Ma, Y.; Liao, Q.; Yao,
J. N. Acc. Chem. Res. 2010, 43, 409. (g) Zayed, J. M.; Nouvel, N.;
Rauwald, U.; Scherman, O. A. Chem. Soc. Rev. 2010, 39, 2806. (h) Brea,
R. J.; Reiriz, C.; Granja, J. R. Chem. Soc. Rev. 2010, 39, 1448. (i) Davis,
J. T.; Spada, G. P. Chem. Soc. Rev. 2007, 36, 296. (j) Beletskaya, I.;
Tyurin, V. S.; Tsivadze, A. Y.; Guilard, R.; Stern, C. Chem. Rev. 2009,
109, 165. (k) Hui, J. K. H.; MacLachlan, M. J. Coord. Chem. Rev. 2010,
254, 2363. (l) Ajayaghosh, A.; Chithra, P.; Varghese, R. Angew. Chem.,
Int. Ed. 2007, 46, 230. (m) Ajayaghosh, A.; Chithra, P.; Varghese, R.;
Divya, K. P. Chem. Commun. 2008, 969.
13933
dx.doi.org/10.1021/ja206457b |J. Am. Chem. Soc. 2011, 133, 13930–13933