Journal of the American Chemical Society
Page 10 of 12
Chemical Synthesis Centre for Doctoral Training, funded by
dinating additives owing to its strong binding to the lithi-
um ion.
1
2
3
4
5
6
7
8
the EPSRC (EP/L015366/1), AstraZeneca, and the University
of Bristol for Ph.D. studentships. We thank the referees for
insightful comments, which have led to important additions to
this manuscript.
(6) The rate of diamine/s-BuLi-promoted lithiation of ben-
zoates and carbamates increases in the series N,N’-
dimethylbispidine > sparteine surrogate > TMEDA > spar-
teine. The nature of the diamine (steric hindrance, basicity,
and flexibility) presumably affects both the equilibria in-
volving active and parasitic complexes and the rate con-
stant for the deprotonation event. The rate of borylation
ABBREVIATIONS
REFERENCES
(1) (a) Hoppe, D.; Hense, T. Angew. Chem., Int. Ed. Engl. 1997, 36,
2282. (b) Hoppe, D.; Marr, F.; Brüggemann, M. Organolithiums in
increases in the contrasteric series TMEDA
> N,N’-
9
dimethylbispidine > sparteine > sparteine surrogate, sug-
gesting the parallel operation of at least two mechanisms:
one where boron–lithium exchange is preceded by ex-
change of the diamine ligand on the lithium ion for sol-
vent/additive molecules and the other where the exchange
is preceded by dissociation of the carbonyl group from the
lithium ion (the diamine ligand remaining on the lithium
ion). The promotion of borylation through the displace-
ment of diamine ligands also appears to be the origin of the
unusually rapid borylation of substrates containing pen-
dant aryl groups, which can intramolecularly displace the
diamine ligand through a cation–π interaction.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Enantioselective Synthesis; Hodgson, D. M., Ed.; Springer: Heidel-
berg, 2003; pp 61−137. (c) Beckmann, E.; Desai, V.; Hoppe, D.
Synlett 2004, 2275. (d) Beckmann, E.; Hoppe, D. Synthesis 2005,
2005, 217.
(2) (a) Beak, P.; McKinnie, B. G. J. Am. Chem. Soc. 1977, 99, 5213.
(b) Beak, P.; Baillargeon, M.; Carter, L. G. J. Org. Chem. 1978, 43,
4255. (c) Beak, P.; Carter, L. G. J. Org. Chem. 1981, 46, 2363.
(3) (a) Wu, J.; Lorenzo, P.; Zhong, S.; Ali, M.; Butts, C. P.; Myers, E.
L.; Aggarwal, V. K. Nature, 2017, 547, 436. (b) Burns, M.; Essafi, S.;
Bame, J. R.; Bull, S. P.; Webster, M. P.; Balieu, S.; Dale, J. W.; Butts, C.
P.; Harvey, J. N.; Aggarwal, V. K. Nature 2014, 513, 183. (c) Rasap-
pan, R.; Aggarwal, V. K. Nat. Chem. 2014, 6, 810. (d) Larouche
Gauthier, R.; Fletcher, C. J.; Couto, I.; Aggarwal, V. K. Chem. Com-
mun. 2011, 47, 12592. (e) Dutheuil, G.; Webster, M. P.; Worthing-
ton, P. A.; Aggarwal, V. K. Angew. Chem., Int. Ed. 2009, 48, 6317. (f)
Stymiest, J. L.; Dutheuil, G.; Mahmood, A.; Aggarwal, V. K. Angew.
Chem., Int. Ed. 2007, 46, 7491. For a review, see: (g) Leonori, D.;
Aggarwal, V. K. Acc. Chem. Res. 2014, 47, 3174.
(4) (a) Kapeller, D. C.; Hammerschmidt, F. J. Org. Chem. 2009, 74,
2380. (b) Derwing, C.; Frank, H.; Hoppe, D. Eur. J. Org. Chem. 1999,
3519. (c) Carstens, A.; Hoppe, D. Tetrahedron 1994, 50, 6097. (d)
Hoppe, D.; Carstens, A.; Krämer, T. Angew. Chem., Int. Ed. Engl.
1990 29, 1424.
(5) Aggarwal, V. K.; Fang, G. Y.; Ginesta, X.; Howells, D. M.; Zaja, M.
Pure Appl. Chem., 2006, 78, 215.
(6) (a) Millán, A.; Grigol Martínez, P. D.; Aggarwal, V. K. Chem. Eur.
J. 2018, 24, 730. (b) Varela, A.; Garve, L. K. B.; Leonori, D.; Ag-
garwal, V. K. Angew. Chem., Int. Ed. 2017, 56, 2127. (c) Noble, A.;
Roesner, S.; Aggarwal, V. K. Angew. Chem., Int. Ed. 2016, 55,
15920. (d) Blair, D. J.; Zhong, S.; Hesse, M. J.; Zabaleta, N.; Myers, E.
L.; Aggarwal, V. K. Chem. Commun., 2016, 52, 5289. (e) Roesner,
S.; Blair, D. J.; Aggarwal, V. K. Chem. Sci., 2015, 6, 3718-3723.
(7) (a) Bagutski, V.; French, R. M.; Aggarwal, V. K. Angew. Chem.,
Int. Ed. 2010, 49, 5142. (b) Blair, D. J.; Fletcher, C. J.; Wheelhouse,
K. M. P.; Aggarwal, V. K.; Angew. Chem. Int. Ed. 2014, 53, 5552.
(8) For other in-situ IR investigations on the lithiation and boryla-
tion of carbamates, see: (a) Fandrick, K. R.; Patel, N. D.; Mulder, J.
A.; Gao, J.; Konrad, M.; Archer, E.; Buono, F. G.; Duran, A.; Schmid,
R.; Daeubler, J.; Fandrick, D. R.; Ma, S.; Grinberg, N.; Lee, H.; Busac-
ca, C. A.; Song, J. J.; Yee, N. K.; Senanayake, C. H. Org. Lett. 2014, 16,
4360. (b) Jason, A.; Mulder, J. A.; Gao, J.; Fandrick, K. R.; Zeng, Z.;
Desrosiers, J.-N.; Patel, N. D.; Li, Z.; Rodriguez, S.; Lorenz, J. C.;
Wang, J.; Ma, S.; Fandrick, D. R.; Grinberg, N.; Lee, H.; Bosanac, T.;
Takahashi, H.; Chen, Z.; Bartolozzi, A.; Nemoto, P.; Busacca, C. A.;
Song, J. J.; Yee, N. K.; Mahaney, P. E.; Senanayake, C. H. Org. Process
Res. Dev. 2017, 21, 1427.
(7) Although trialkylboranes are more Lewis acidic than
boronic esters, these families of organoboron compounds
undergo boron–lithium exchange at very similar rates. The
poorer Lewis acidity of boronic esters appears to be miti-
gated by their ability to form a complex with the organo-
lithium, through interaction of an oxygen atom of the diol
ligand with the lithium ion, prior to boron–lithium ex-
change. The unusually low carbonyl stretching frequency
of boronate complexes derived from α-lithiated benzoates
and trialkylboranes, compared to that of complexes de-
rived from boronic esters, suggests that the lithium ion
resides on the carbonyl oxygen atom; for complexes de-
rived from boronic esters, the lithium ion is believed to
reside on the oxygen atom of the diol ligand. The ability of
boronates derived from trialkylboranes to undergo 1,2-
metallate rearrangement even at temperatures as low as
−78 °C is believed to be in part due to the positioning of the
lithium ion.
ASSOCIATED CONTENT
The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/jacs.xxxxxxx.
Reaction set up, experimental procedures, full in situ
IR data and traces (PDF).
AUTHOR INFORMATION
Corresponding Author
* eddie.myers@nuigalway.ie
* V.Aggarwal@bristol.ac.uk.
(8) For previous observations of similar “pre-lithiated” species,
see, for example: (a) Al-Aseer, M.; Beak, P.; Hay, D.; Kempf, D. J.;
Mills, S.; Smith, S. G.; J. Am. Chem. Soc. 1983, 105, 2080. (b) Stead,
D.; Carbone, G.; O’Brien, P.; Campos, K. R.; Coldham, I.; Sanderson,
A.; J. Am. Chem. Soc. 2010, 132, 7260.
(9) Grañ a, P.; Paleo, M. R.; Sardina, F. J. J. Am. Chem. Soc. 2002,
124, 12511.
(10) Fernández-Nieto, F.; Paleo, M. R.; Colunga, R.; Raposo, M. L.;
Garcia-Rio, L.; Sardina, F. J. Org. Lett. 2016, 18, 5520.
(11) (a) Hintze, F.; Hoppe, D. Synthesis 1992, 1216. (b) Royal, T.;
Baumgartner, Y; Baudoin, O.; Org. Lett. 2017, 19, 166.
Author Contributions
‡ R. Mykura, S. Veth, and A. Varela contributed equally.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENT
We thank the EPSRC (EP/I038071/1) and University of Bris-
tol for financial support. R.C.M, L.D., and J.J.F. thank the Bristol
ACS Paragon Plus Environment