3320
N. Carrera et al. / Journal of Organometallic Chemistry 696 (2011) 3316e3321
G. Montavon, J.-P. Quintard, Tetrahedron Lett. 48 (2007) 1781e1785;
(e) K.C. Nicolaou, N. Winssinger, J. Pastor, F. Murphy, Angew. Chem. Int. Ed. 37
(1998) 2534e2537;
polymer was filtered, washed with MeOH and dried under vacuum
to afford a blue-grey solid (3.1427 g, 88%).
Polymer 9 (R2 ¼ peFC6H4) was prepared in the same way using
p-bromofluorobenzene as reagent instead of 4-bromoanisole.
(f) H. Kuhn, W.P. Neumann, Synlett (1994) 123e124.
[7] Different methodologies have been used to tackle the problem of the
separation of toxic tin byproducts, including the use of monoorganotin
reagents: (a) D.A. Powell, T. Maki, G.C. Fu, J. Am. Chem. Soc. 127 (2005)
510e511;
9: 1H NMR (CDCl3, 400.13 MHz):
d 7.9e7.4 (br, 10Harylfluorene),
7.32 (m, 4Hfluoroaryl; Hortho), 7.0 (m, 4Hfluoroaryl; Hmeta), 2.10 (a,
4Hlinker; CH2efluorene), 1.49 (br, 8HBu; CH2), 1.41 (br, 4Hlinker; CH2),
(b) A. Herve, A.L. Rodriguez, E. Fouquet, J. Org. Chem. 70 (2005) 1953e1956
ionic liquids;
(c) P.D. Pham, J. Vitz, C. Chamignon, A. Martel, S. Legoupy, Eur. J. Org. Chem.
(2009) 3249e3257;
(d) N. Louaisil, P.D. Pham, F. Boeda, D. Faye, A.-S. Castanet, S. Legoupy, Eur. J.
Org. Chem. (2011) 143e149;
(e) J. Vitz, D.H. Mac, S. Legoupy, Green Chem. 9 (2007) 431e433;
(f) S. Liu, T. Fukuyama, M. Sato, I. Ryu, Synlett (2004) 1814e1816;
(g) C. Chiappe, G. Imperato, E. Napolitano, D. Pieraccini, Green Chem. 6
(2004) 33e36;
(h) S.T. Handy, X. Zhang, Org. Lett. 3 (2001) 233e236 catalytic amounts of
the tin reagent;
(i) W.P. Gallagher, R. Maleczka Jr., J. Org. Chem. 70 (2005) 841e846;
(j) W.P. Gallagher, I. Terstiege, R.E. Maleczka Jr., J. Am. Chem. Soc. 123
(2001) 3194e3204 fluorinated alkyl substituentes;
(k) K. Olofsson, S.-Y. Kim, M. Larhed, D.P. Curran, A. Hallberg, J. Org. Chem.
64 (1999) 4539e4541 A polyaromatic hydrocarbon substituent;
(l) D. Stien, S. Gastaldi, J. Org. Chem. 69 (2004) 4464e4470 and the
conventional elimination of tributyltin halides as tributyltin fluorides;
(m) J.E. Leibner, J. Jacobus, J. Org. Chem. 44 (1979) 449e450;
(n) D.C. Harrowven, I.L. Guy, Chem. Comm. 67 (2004) 1968e1969;
(o) D.C. Harrowven, D.P. Curran, S.L. Kostiuk, I.L. Wallis-Gay, S. Whiting,
K.J. Stenning, B. Tang, E. Packard, L. Nanson, Chem. Commun. 46 (2010)
6335e6337.
1.30 (br, 8HBu; CH2eCH3), 1.15 (br, 4Hlinker; CH2), 1.0 (br, 8HBu
;
CH2eSn), 0.92 (br, 4Hlinker; CH2eSn), 0.85 (br, 12HBu; CH3, 4Hlinker).
13C{1H} NMR (CDCl3,100.613 MHz): 163.1 (1JCF ¼ 245 Hz, 2Cfluoroaryl
;
;
C
paraeF), 151.6 (2Carylfluorene; C8a, C9a), 140.2, 140.4 (4Carylfluorene
0 0
C1 ,C4 , C4a, C4b), 139.6 (2Carylfluorene; C2, C7), 137.0 (3JCF ¼ 6 Hz,
4Cfluoroaryl; Cortho), 136.6 (2Cfluoroaryl; CipsoeSn), 127.5 (4Carylfluorene
;
0
0
0
0
C2 , C3 , C5 , C6 ), 126.0 (2Carylfluorene; C1, C8), 121.3, (2Carylfluorene; C6,
C3), 120.1 (2Carylfluorene; C4, C5), 115.2 (2JCF ¼ 20 Hz, 4Cfluoroaryl
;
Cmeta), 55.3 (1Cfluorene; C9), 40.5 (2Clinker; CH2efluorene), 33.9
(2Clinker, CH2), 29.0 (2JCSn ¼ 10.1 Hz, 4CBu; CH2), 27.5 (3JCSn ¼ 55.0 Hz,
4CBu
;
CH2eCH3),
26.2
(2Clinker
,
CH2),
23.8,
(2Clinker;
CH2eCH2efluorene), 13.6 (4CBu; CH3), 9.7 (2Clinker; CH2eSn), 9.6
(4CBu; CH2eSn). 119Sn {1H} NMR (CDCl3, 149.211 MHz):
19F NMR (CDCl3, 376.38): ꢀ115.5 (br).
d
ꢀ40.6 (br).
4. Conclusion
Polyfluorenes can be functionalized with stannylalkyl chains at
C9. This leads to new polymers which can be used as reagents in the
Stille reaction. Theycan berecoveredand reused withoutactivityloss.
The reagent polymer becomes less soluble on recycling and this is an
advantage since the tin contents of the coupling products decreases
accordingly. The polymer can be reused for multiple Stille couplings,
just introducing a new eSnBu2R group by reacting the recovered
byproduct with eSnBu2Cl groups with a new LiR derivative.
[8] (a) J.-C. Poupon, D. Marcoux, J.-M. Cloarec, A.B. Charette, Org. Lett. 9 (2007)
3591e3594;
(b) M. Hoshino, P. Degenkolb, D.P. Curran, J. Org. Chem. 62 (1997) 8341e8349.
[9] N. Carrera, E. Gutierrez, R. Benavente, M.M. Villavieja, A.C. Albéniz, P. Espinet,
Chem. Eur. J. 14 (2008) 10141e10148.
[10] (a) A.C. Grimsdale, K.L. Chan, R.E. Martin, P.G. Jokisz, A.B. Holmes, Chem. Rev.
109 (2009) 897e1091;
(b) U. Scherf, E.J.W. List, Adv. Mater. 14 (2002) 477e487;
(c) M.J. Leclerc, Polym. Sci. Part A: Polym. Chem. 39 (2001) 2867e2873;
(d) D. Neher, Macromol. Rapid Commun. 22 (2001) 1365e1385.
[11] (a) R. Molina, S. GómezeRuiz, F. Montilla, A. SalinaseCastillo, S. FernándezeArroyo,
M.M. Ramos, R. Mallavia, Macromolecules 42 (2009) 5471e5477;
(b) R. Mallavia, F. Montilla, I. Pastor, P. Velásquez, B. Arredondo, A.L. Alvarez,
C.R. Mateo, Macromolecules 38 (2005) 3185e3192;
Acknowledgements
(c) R. Mallavia, D. Martínez-Pérez, B.F. Chmelka, G.C. Bazan, Bol. Soc. Esp. Ceram 43
(2004) 327e330;
(d) M. Stork, B.S. Gaylord, A.J. Heeger, G.C. Bazan, Adv. Mater. 14 (2002) 361e366.
[12] N. Carrera, M.H. Pérez-Temprano, A.C. Albéniz, J.A. Casares, P. Espinet,
Organometallics 28 (2009) 3957e3958.
Financial support from the Spanish MEC (DGI, grants CTQ2010-
18901/BQU and MAT2008-05670; Consolider Ingenio 2010, Grant
INTECAT, CSD2006-0003; FPU fellowship to NC), the Junta de Cas-
tilla y León (Grupos de Excelencia GR169; grant VA373A11-2) and
the Fundación Caja Murcia is gratefully acknowledged.
[13] An excess of LiSnBu2An was used in the stannylation of 2 and the decom-
position of this stannide gives tin oligomers such as AnBu2SneSnBu2An (119Sn
CDCl3,
d
ꢀ103.9, J119Sne117Sn ¼ 3070 Hz). The absence of these byproducts
(in the limits of the NMR measurements) was checked by 119Sn NMR of
polymer 3.
References
[14] A.C. Albéniz, P. Espinet, B. Martín-Ruiz, Chem. Eur. J. 7 (2001) 2481e2489.
[15] For theoretical studies on the effect of olefins with electron withdrawing
substituents as coupling additives see (a) M. Pérez-Rodríguez, A.A.C. Braga,
M. García-Melchor, M.H. Pérez-Temprano, J.A. Casares, G. Ujaque, A.R. de Lera,
R. Álvarez, F. Maseras, P. Espinet, J. Am. Chem. Soc. 131 (2009) 3650e3657;
(b) M. Pérez-Rodríguez, A.A.C. Braga, A.R. de Lera, F. Maseras, R. Álvarez,
P. Espinet, Organometallics 29 (2010) 4983e4991.
[1] T.N. Mitchell, in: A. Meijere, F. Diederich (Eds.), second ed., Metal Catalyzed Cross-
Coupling Reactions, vol. 1 Wiley-VCH, Weinheim, 2004, pp. 125e161 ch. 3.
[2] P. Espinet, A. Echavarren, Angew. Chem. Int. Ed. 43 (2004) 4704e4734.
[3] J.K. Stille, Angew. Chem. Int. Ed. 25 (1986) 508e524.
[4] (a) V. Farina, V. Krishanamurthy, W.J. Scott, The Stille Reaction. Wiley, New
York, 1998;
(b) P. Espinet, M. Genov, in: A.G. Davies, M. Gielen, K.H. Pannell, R.T. Tiekink
(Eds.), Tin ChemistryeFundamentals, Frontiers and Applications, Wiley, Chi-
chester, 2008, pp. 561e578.
[16] We decided to use a set of conditions that ensure complete conversion, i. e.
24 h and an excess of polymeric reagent. The latter is not a problem since, in
contrast to monomeric reagents, the excess is recovered and recycled. An
initial survey of the reaction time required revealed that shorter reaction
times (12 h for example) did not lead to complete conversion.
[17] Apparently the underestimation in the quantification is due to loss of soluble
tin polymer contaminant by precipitation during the manipulation of the
samples for luminescence determimation.
[5] (a) S. Pascual, A.M. Echavarren, in:A.G. Davies, M. Gielen, K.H. Pannell, R.T. Tiekink
(Eds.), Tin ChemistryeFundamentals, Frontiers and Applications, Wiley, Chi-
chester, 2008, pp. 579e607;
(b) K.C. Nicolaou, P.G. Bulger, D.E. Sarlah, Angew. Chem. Int. Ed. 44 (2005)
4442e4489;
(c) H.W. Lam, G. Pattenden, Angew. Chem. Int. Ed. 41 (2002) 508e511;
(d) K.C. Nicolaou, J. Xu, F. Murphy, S. Barluenga, O. Baudoin, H. Wei, D.L.F. Gray,
T. Ohshima, Angew. Chem. Int. Ed. 38 (1999) 2447e2451;
[18] The chlorine and bromine content in the polymer was determined by oxygen-
flask combustion of a sample and analysis of the residue by the mercurimetric
titration of chloride D.C. White, Microchim. Acta (1961) 449e456.
(e) K.C. Nicolaou, T.K. Chakraborty, A.D. Piscopio, N. Minowa, P. Bertinato, J. Am.
Chem. Soc. 115 (1993) 4419e4420.
[19] G.J.M. Van Der Kerk, J.G. Noltes, J.G.A. Luijten, J. Appl. Chem.
366e374.
7 (1957)
[6] Examples of the use of polymeric tin reagents in Stille couplings: (a)
A.C. Albéniz, N. Carrera, Eur. J. Inorg. Chem. (2011) 2347e2360;
(b) J.-M. Chrétien, J.D. Kilburn, F. Zammattio, E. Le Grognec, J.-P. Quintard, in:
A.G. Davies, M. Gielen, K.H. Pannell, R.T. Tiekink (Eds.), Tin Chemistry-
Fundamentals, Frontiers and Applications, Wiley, Chichester, 2008, pp.
653e665 Ch. 5;
[20] W.C. Still, J. Am. Chem. Soc. 100 (1978) 1481e1487.
[21] Y. Tatsuno, T. Yoshida, Y. Seiotsuka, in: D.F. Shriver (Ed.), Inorganic Syntheses,
vol. 19, Wiley-Interscience, New York, 1979, pp. 220e221.
[22] CAS registry number: 140-67-0 (a) P. Gomes, C. Gosmini, J. Périchon, J. Org.
Chem. 68 (2003) 1142e1145;
(b) R.C. Haley, J.A. Miller, H.C.S. Wood, J. Chem. Soc. C (1969) 264e268.
[23] Q.-Y. Chen, Z.-T. Li, J. Org. Chem. 58 (1993) 2599e2604.
[24] CAS registry number: 2143-90-0 (a) A.M. Echavarren, J.K. Stille, J. Am. Chem.
Soc. 109 (1987) 5478e5486.
(c) G. Kerric, E. Le Grognec, F. Zammattio, M. Paris, J.-P. Quintard, J. Organomet.
Chem. 695 (2010) 103e110;
(d) J.-M. Chrétien, A. Mallinger, F. Zammattio, E. Le Grognec, M. Paris,