Organometallics
ARTICLE
(2) The upper limit was determined by the resolution of the
instrument response: Sorensen, A. A.; Yang, G. K. J. Am. Chem. Soc.
1991, 113, 7061–7063.
(3) Pang, Z.; Burkey, T. J.; Johnston, R. F. Organometallics 1997,
16, 120–123.
(20) (a) Dunlap, B. I.; Connolly, J. W. D.; Sabin, J. R. J. Chem. Phys.
1979, 71, 3396–3402. (b) Dunlap, B. I.; Connolly, J. W. D.; Sabin, J. R.
J. Chem. Phys. 1979, 71, 4993–4999. (c) Dunlap, B. I. J. Chem. Phys.
1983, 78, 3140–3142. (d) Dunlap, B. I. J. Mol. Struct. (THEOCHEM)
2000, 529, 37–40.
(4) Jiao, T.-J.; Pang, Z.; Burkey, T. J.; Johnston, R. F.; Heimer, T. A.;
Kleinman, V. D.; Heilweil, E. J. J. Am. Chem. Soc. 1999, 121, 4618–4624.
(5) (a) To, T. T; Burkey, T. J.; Heilweil, E. J. J. Phys. Chem. A 2006,
110, 10669–10673. (b) To, T. T; Duke, B. C., III; Burkey, T. J.; Heilweil,
E. J. J. Phys. Chem. A 2007, 111, 6933–6937. (c) Yeston, J. S.; To, T. T;
Burkey, T. J.; Heilweil, E. J. J. Phys. Chem. B 2004, 108, 4582–4585.
(6) (a) Xie, X.; Simon, J. D. J. Am. Chem. Soc. 1990, 112, 1130–1136.
(b) Joly, A. G.; Nelson, K. A. Chem. Phys. 1991, 152, 69–82. (c) Joly,
A. G.; Nelson, K. A. J. Phys. Chem. 1989, 93, 2876–2878. (d) Simon,
J. D.; Xie, X. J. Phys. Chem. 1987, 91, 5538–5540. (e) Simon, J. D.; Xie, X.
J. Phys. Chem. 1986, 90, 6751–6753. (f) Kotz, K. T.; Yang, H.; Snee,
P. T.; Payne, C. K.; Harris, C. B. J. Organomet. Chem. 2000, 596,
183–192.
(7) To, T. T.; Duke, C. B.; Junker, C. S.; O’Brien, C. M.; Ross, C. R.;
Barnes, C. E.; Webster, C. E.; Burkey, T. J. Organometallics 2008, 27,
289–296.
(8) Rybinskaya, M. I.; Korneva, L. M. J. Organomet. Chem. 1982,
231, 25–35.
(9) Telegina, L. N.; Ezernitskaya, M. G.; Godovikov, I. A.; Babievskii,
K. K.; Lokshin, B. V.; Strelkova, T. V.; Borisov, Y.; Loim, N. M. Eur. J.
Inorg. Chem. 2009, 3636–3643.
(10) Brown, G. H. Photochromism; Wiley: New York, 1971.
(11) Certain commercial equipment, instruments, or materials are
identified in this paper to adequately specify the experimental procedure.
In no case does identification imply recommendation or endorsement
by NIST, nor does it imply that the materials or equipment identified are
necessarily the best available for the purpose.
(21) We speculate that the nonexponential decay observed in the
absence of pyridine is an autocatalytic reaction resulting from multi-
nuclear products whose formation are otherwise inhibited by excess
pyridine.
(22) See ref 7 and Supporting Information.
(23) (a) To, T. T.; Heilweil, E. J.; Duke, C. B., III; Burkey, T. J.
J. Phys. Chem. A 2007, 111, 6933–6937. (b) Yeston, J. S.; To, T. T.;
Burkey, T. J.; Heilweil, E. J. J. Phys. Chem. B 2004, 108, 4582–4585.
(24) Dougherty, T. P.; Heilweil, E. J. Chem. Phys. Lett. 1994, 227,
19–25.
(25) Schwartz, B. J.; King, J. C.; Zhang, J. Z.; Harris, C. B. Chem.
Phys. Lett. 1993, 203, 503–508.
(26) Since 2 can be observed by FTIR at room temperature, there
can be no process that would cause the decay of 2 in one second or less.
In general the variations observed in peak intensities in Figure 14 on
ultrafast time scales are due to random or experimental error. This fact is
apparent when additional spectra are examined (Figures 26S and 27S in
the Supporting Information). The bleach near 1940 cmꢀ1 is variable
partly due to the fact that the laser intensity varies, especially for ns vs ps
spectra, since different lasers were used to obtain optimum signal-to-
noise. The variation in bleach intensity leads to variation in the apparent
position of overlapping peaks.
(27) Winnik, M. A. Chem. Rev. 1981, 81, 491–524.
(28) DeWitt, K.; To T. T.; Heilweil, E. J. Unpublished result. The only
published results are for related cymantrene derivatives where n-hexane-
coordinated species from acyl derivatives of cymantrene are observed at
1906ꢀ1910 cmꢀ1. See refs 4 and 5c.
(29) Lugovskoy, S.; Lin, J.; Schultz, R. H. J. Chem. Soc., Dalton Trans.
2003, 3103–3110.
(12) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;
Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.;
Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.;
Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.;
Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima,
T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.;
Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin,
K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.;
Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.;
Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.;
Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.;
Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.;
Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich,
(30) Weber, L.; Domke, I.; Stammler, H.-G.; Neumann, B. Eur. J.
Inorg. Chem. 2005, 4715–4722.
(31) Similar data have been reported: (a) Parker, D. J.; Stiddard,
M. H. B. J. Chem. Soc. A 1968, 2263–2264. (b) Haines, L. M.; Stiddard,
M. H. B. Adv. Inorg. Chem. Radiochem. 1969, 12, 53–133.
(32) The tabulated computed frequencies for 1, 4, and 5 are
averaged values from three, three, and two optimized conformers,
respectively, with very similar relative energies and frequencies within
each set. See Supporting Information for further details.
€
S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.;
Fox, D. J. Gaussian 09, Revision A.02; Gaussian, Inc.: Wallingford, CT,
2009.
(13) (a) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996,
77, 3865–3868. (b) Erratum 1997, 78, 1396.
(14) Parr, R. G.; Yang, W. Density Functional Theory of Atoms and
Molecules; Oxford University Press: New York, 1989.
(15) (a) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 299–310.
(b) Wadt, W. R.; Hay, P. J. J. Chem. Phys. 1985, 82, 284–298.
(16) Couty, M.; Hall, M. B. J. Comput. Chem. 1996, 17, 1359–1370.
(17) Ehlers, A. W.; B€ohme, M.; Dapprich, S.; Gobbi, A.; H€ollwarth,
A.; Jonas, V.; K€ohler, K. F.; Stegmann, R.; Veldkamp, A.; Frenking, G.
Chem. Phys. Lett. 1993, 208, 111–114.
(18) Hariharan, P. C.; Pople, J. A. Theor. Chim Acta 1973,
28, 213–222. The 6-31G(d0) basis set has the d polarization func-
tions for C, N, and O taken from the 6-311G basis set, instead of the
original arbitrarily assigned value of 0.8 used in the 6-31G(d) basis set.
Foresman, J. B.; Frisch, Æ. Exploring Chemistry with Electronic Structure
Methods, 2nd ed.; Gaussian, Inc.: Pittsburgh, PA, p 110.
(19) Francl, M. M.; Pietro, W. J.; Hehre, W. J.; Binkley, J. S.;
DeFrees, D. J.; Pople, J. A.; Gordon, M. S. J. Chem. Phys. 1982, 77,
3654–65.
5619
dx.doi.org/10.1021/om2003656 |Organometallics 2011, 30, 5611–5619