7098
J. Shi et al. / Bioorg. Med. Chem. Lett. 21 (2011) 7094–7098
Bosserman, M.; Burlein, C.; Colwell, L. F.; Fay, J. F.; Flores, O. A.; Getty, K.;
LaFemina, R. L.; Leone, J.; MacCoss, M.; McMasters, D. R.; Tomassini, J. E.; Von
Langen, D.; Wolanski, B.; Olsen, D. B. J. Med. Chem. 2004, 47, 5284.
9. Clark, J. L.; Hollecker, L.; Mason, J. C.; Stuyver, L. J.; Tharnish, P. M.; Lostia, S.;
McBrayer, T. R.; Schinazi, R. F.; Watanabe, K. A.; Otto, M. J.; Furman, P. A.; Stec,
W. J.; Patterson, S. E.; Pankiewicz, K. W. J. Med. Chem. 2005, 48, 5504.
10. Wang, P.; Chun, B. K.; Rachakonda, S.; Du, J.; Khan, N.; Shi, J.; Stec, W.; Cleary,
D.; Ross, B. S.; Sofia, M. J. J. Org. Chem. 2009, 74, 6819.
11. (a) Ugarkar, B. G.; Castellino, A. J.; DaRe, J. S.; Ramirez-Weinhouse, M.; Kopcho,
J. J.; Rosengren, S.; Erion, M. D. J. Med. Chem. 2003, 46, 4750; (b) Seela, F.; Peng,
X. J. Org. Chem. 2006, 71, 81.
12. But, T. Y. S.; Toy, P. H. Chem. Asian J. 2007, 2, 1340.
13. Wang, X.; Seth, P. P.; Ranken, R.; Swayze, E. E.; Migawa, M. T. Nucleosides
Nucleotides Nucleic Acids 2004, 23, 161.
synthesized 7-deazapurine nucleoside phosphoramidate prodrugs
18–21 showed no anti-HCV activity, whereas the nucleoside tri-
phosphates 22–24 demonstrated good inhibitory activity against
both wild-type and S282T mutant HCV polymerases (IC50
3–15 M). These 7-deazapurine nucleosides and prodrugs were
also evaluated for in vitro anti-HIV-1 activity and cytotoxicity. Only
one compound, an -form of 7-carbomethoxyvinyl substituted
nucleoside (10), showed good anti-HIV-1 activity (EC50 and EC90
of 0.71 0.25 M and 9.5 3.3 M, respectively) with no cytotoxic-
ity up to 100 M. Some selected compounds were evaluated against
:
l
a
l
l
l
HBV, and none showed significant in vitro anti-HBV activity. A cel-
lular pharmacology study of the nucleosides and prodrugs in Huh-7
cells utilizing LC–MS/MS revealed that the triphosphates were not
formed at therapeutically significant levels, indicating problems
in the first and second phosphorylation steps for these nucleoside
analogs by the cellular phosphorylation enzymes.
14. Selected synthetic procedures and spectroscopic data: 4-amino-7-iodo-1-(2-
deoxy-2-fluoro-2-C-methyl-
(4e) and 4-amino-7-iodo-1-(2-deoxy-2-fluoro-2-C-methyl-b-
1H-pyrrolo[2,3-d]pyrimidine (5e). To solution of 4-chloro-7-iodo-1H-
pyrrolo[2,3-d]pyrimidine (339 mg, 1.21 mmol), 2-deoxy-2-fluoro-2-C-methyl-
/b- -ribofuranose (500 mg, 1.34 mmol) and triphenylphosphine (698 mg,
a-
D
-ribofuranosyl)-1H-pyrrolo[2,3-d]pyrimidine
D-ribofuranosyl)-
a
a
D
2.66 mmol) in anhydrous THF (5 mL) was added diisopropyl azodicarboxylate
(DIAD) (0.53 mL, 2.66 mmol), and the reaction mixture was stirred at rt for 2 d.
The solvent was evaporated, and the residue was purified by flash
chromatography on silica gel eluting with hexane–EtOAc (9:1–2:1) to give
390 mg (51%) of the nucleoside 3e as a white solid, which contained a 1:1 ratio
Acknowledgments
of
a and b anomers. The compound 3e (390 mg, 0.61 mmol) was placed in a
We thank Emilie Fromentin, Aleksandr Obikhod, Sarah Solo-
mon, and Jason Grier for excellent technical assistance. This work
was supported in part by 2P30-AI-050409 (RFS), and the Depart-
ment of Veterans Affairs (RFS), and by the Cancer Research Society
(MG). Dr. Schinazi is a founder and major shareholder of RFS Phar-
ma, LLC and his laboratory received no funding from RFS Pharma or
vice versa. Dr. Götte received research grants from Tibotec, Merck,
Gilead Sciences, AstraZeneca, Pfizer, and GlaxoSmithKline. All
other authors have no competing interests.
steel vessel, and 1,4-dioxane (10 mL) was added followed by NH4OH (28%,
20 mL). The steel vessel was sealed and heated at 120 °C for 14 h. After cooling
to rt, the solvent was evaporated and the residue was purified by flash
chromatography on silica gel eluting with CH2Cl2–MeOH (95:5–9:1) to give
108 mg (43%) of 4e and 82 mg (33%) of 5e both as a white solid. 4e: Rf 0.30
(CH2Cl2–MeOH 9:1); 1H NMR (DMSO-d6) d 8.12 (s, 1H, H-2), 7.38 (d, J = 3.47 Hz,
1H, H-6), 6.70 (br s, 2H, NH2), 6.38 (d, J = 20.79 Hz, 1H, H-10), 5.71 (d,
J = 6.93 Hz, 1H, OH-30), 4.88 (t, J = 5.78 Hz, 1H, OH-50), 4.12–4.10 (m, 1H, H-30),
4.07–4.05 (m, 1H, H-40), 3.70, 3.50 (2 m, 2H, H-50), 1.29 (d, J = 21.95 Hz, 3H,
CH3). LC–MS calcd for C12H15FIN4O3 (M+1): 409.0, found: 409.0. 5e: Rf 0.42
(CH2Cl2–MeOH 9:1); 1H NMR (DMSO-d6) d 8.13 (s, 1H, H-2), 7.77 (s, 1H, H-6),
6.75 (br s, 2H, NH2), 6.32 (d, J = 18.10 Hz, 1H, H-10), 5.65 (d, J = 6.93 Hz, 1H, OH-
30), 5.31 (t, J = 4.62 Hz, 1H, OH-50), 4.14–4.12 (m, 1H, H-30), 3.87, 3.67 (2 m, 3H,
H-40, H-50), 0.94 (d, J = 22.72 Hz, 3H, CH3). LC–MS calcd for C12H15FIN4O3
(M+1): 409.0, found: 409.0.
References and notes
1. Wasley, A.; Alter, M. J. Semin. Liver Dis. 2000, 20, 1.
2. Cuthbert, J. A. Clin. Microbiol. Rev. 1994, 7, 505.
3. Di Bisceglie, A. M. Hepatology 2000, 31, 1014.
15. Okamoto, A.; Taiji, T.; Tanaka, K.; Saito, I. Tetrahedron Lett. 2000, 41, 10035.
16. McGuigan, C.; Cahard, D.; Salgado, A.; De Clercq, E.; Balzarini, J. Antimicrob.
Agents Chemother. 1996, 7, 31.
4. Di Bisceglie, A. M.; Mchutchison, J.; Rice, C. M. Hepatology 2002, 35, 224.
5. McCown, M. F.; Rajyaguru, S.; Le Pogam, S.; Ali, S.; Jiang, W. R.; Kang, H.;
Symons, J.; Cammack, N.; Najera, I. Antimicrob Agents Chemother. 2008, 52,
1604.
17. Stuyver, L. J.; Whitaker, T.; McBrayer, T. R.; Hernandez-Santiago, B. I.; Lostia, S.;
Tharnish, P. M.; Ramesh, M.; Chu, C. K.; Jordan, R.; Shi, J.; Rachakonda, S.;
Watanabe, K. A.; Otto, M. J.; Schinazi, R. F. Antimicrob. Agents Chemother. 2003,
47, 244.
6. Carroll, S. S.; Olsen, D. B. Infect. Disord. Drug Targets 2006, 6, 17.
7. (a) Rodriguez-Torres, M.; Lalezari, J.; Gane, E. J.; DeJesus, E.; Nelson, D. R.;
Everson, G. T.; Jacobson, I. M.; R, R. K.; McHutchison, J. G. In 59th Annual Meeting
of the American Association for the Study of Liver Diseases (AASLD 2008) San
Francisco. October 31-November 4, 2008. (b) Lalezarl, J.; Asmuth, D.; Casiro, A.;
Vargas, A.; Dubuc, P.; Liu, W.; Pletropaolo, K.; Zhou, X. J.; Sullivan-Bolyal, J.;
Mayers, D.; Group, t. I.-C.-I. In 60th Annual Meeting of the American Association
for the Study of Liver Diseases Boston, MA, USA, 2009. (c) Rodriguez-Torres, M.;
Lawitz, E.; Flach, S.; Denning, J. M.; Albanis, E.; Symonds, W.; Berrey, M. M. In
60th Annual Meeting of the American Association for the Study of Liver Diseases
Boston, MA, USA, 2009.
18. (a) Schinazi, R. F.; Sommadossi, J. P.; Saalmann, V.; Cannon, D. L.; Xie, M.-Y.;
Hart, G. C.; Smith, G. A.; Hahn, E. F. Antimicrob. Agents Chemother. 1990, 34,
1061; (b) Stuyver, L. J.; Lostia, S.; Adams, M.; Mathew, J. S.; Pai, B. S.; Grier, J.;
Tharnish, P. M.; Choi, Y.; Chong, Y.; Choo, H.; Chu, C. K.; Otto, M. J.; Schinazi, R.
F. Antimicrob. Agents Chemother. 2002, 46, 3854.
19. Deval, J.; Powdrill, M. H.; D0Abramo, C. M.; Cellai, L.; Götte, M. Antimicrob.
Agents Chemother. 2007, 51, 2920.
20. Korba, B. E.; Gerin, J. L. Antiviral Res. 1992, 19, 55.
21. Wang, J.; Choudhury, D.; Chattopadhyaya, J.; Eriksson, S. Biochemistry 1999, 38,
16993.
8. Eldrup, A. B.; Prhavc, M.; Brooks, J.; Bhat, B.; Prakash, T. P.; Song, Q.; Bera, S.;
Bhat, N.; Dande, P.; Cook, P. D.; Bennett, C. F.; Carroll, S. S.; Ball, R. G.;