Figure 1. Structures of depsipeptide HDAC inhibitors with
amino acid side chains indicated in red.
Figure 2. Cheng’s original (1, 2) and revised (3, 4) structures of
thailandepsins and Brady’s burkholdacs (5, 6).
sp. is an ester prodrug rather than a disulfide. The struc-
tural complexity and potent biological activity of these
depsipeptides has led to intensive efforts directed at total
and analogue synthesis by ourselves8 and others.9ꢀ12
Recently, the Cheng group characterized the FK228 gene
cluster.13 The biosynthesis involves a modular “assembly
line” hybrid of nonribosomal peptide synthase and polyke-
tide synthase. By genome mining for homologous open read-
ing frames, Cheng predicted Burkholderia thailandensis E264
to be a depsipeptide producer and discovered thailandepsins
A (1) and B (2) as disclosed in a patent (Figure 2).14
Intriguingly, one amide bond is replaced by a hemiam-
inal;a rare but not unprecedented motif in cyclic peptides.15
We explored a thailandepsin A synthesis via cyclization of an
aldehyde amine with the disulfide bridge in place but found
this to be a complex reaction yielding multiple products.
Since the patent provided no characterization data apart
from low-resolution MS that did not match the proposed
structures, we set aside further work on these compounds.
Cheng later revised the thailandepsin structures to more
plausible spiruchostatin congeners 3 and 4 (University of
Wisconsin;Madison Research Foundation presentation,
2010). While no stereochemical assignment was made, we
postulated that the statine was the syn diastereomer and all
(8) (a) Yurek-George, A.; Habens, F.; Brimmell, M.; Packham, G.;
Ganesan, A. J. Am. Chem. Soc. 2004, 126, 1030–1031. (b) Davidson, S. M.;
Townsend, P. A.; Carroll, C.; Yurek-George, A.; Balasubramanyam, K.;
Kundu, T. K.; Stephanou, A.; Packham, G.; Ganesan, A.; Latchman, D. S.
ChemBiochem 2005, 6, 162–170. (c) Doi, T.; Iijima, Y.; Shin-ya, K.;
Ganesan, A.; Takahashi, T. Tetrahedron Lett. 2006, 47, 1177–1180. (d)
Yurek-George, A.; Cecil, A.; Mo, A. H. K.; Wen, S.; Rogers, H.; Habens,
F.; Maeda, S.; Yoshida, M.; Packham, G.; Ganesan, A. J. Med. Chem.
2007, 50, 5720–5726. (e) Crabb, S. J.; Howell, M.; Rogers, H.; Ishfaq, M.;
Yurek-George, A.;Carey, K.;Pickering, B. M.;East, P.;Mitter, R.;Maeda,
S.; Johnson, P. W. M.; Townsend, P.; Shin-ya, K.; Yoshida, M.; Ganesan,
A.; Packham, G. Biochem. Pharmacol. 2008, 76, 463–475. (f) Wen, S.;
Packham, G.; Ganesan, A. J. Org. Chem. 2008, 73, 9353–9361. (g) Iijima,
Y.; Munakata, A.; Shin-ya, K.; Ganesan, A.; Doi, T.; Takahashi, T.
Tetrahedron Lett. 2009, 50, 2970–2972. (h) Tiffon, C. E.; Adams, J. E.;
van der Fits, L.; Wen, S.; Townsend, P. A.; Ganesan, A.; Hodges, E.;
Vermeer, M. H.; Packham, G. Br. J. Pharmacol. 2011, 162, 1590–1602. (i)
Benelkebir, H.; Marie, S.; Hayden, A. L.; Lyle, J.; Loadman, P. M.; Crabb,
S. J.; Packham, G.; Ganesan, A. Bioorg. Med. Chem. 2011, 19, 3650–3658.
(9) FK228:(a) Li, K. W.; Xing, W.; Simon, J. A. J. Am. Chem. Soc.
1996, 118, 7237–7238. (b) Greshock, T. J.; Johns, D. M.; Noguchi, Y.;
Williams, R. M. Org. Lett. 2008, 10, 613–616. (c) Di Maro, S.; Pong,
R. C.; Hsieh, J. T.; Ahn, J. M. J. Med. Chem. 2008, 51, 6639–6641.
(10) FR901,375:Chen, Y.; Gambs, C.; Abe, Y.; Wentworth, P., Jr.;
Janda, K. D. J. Org. Chem. 2003, 68, 8902–8905.
(12) Largazole:(a) Ying, Y.; Taori, K.; Kim, H.; Hong, J.; Luesch, H.
J. Am. Chem. Soc. 2008, 130, 8455–8459. (b) Nasveschuk, C. G.;
Ungermannova, D.; Liu, X.; Phillips, A. J. Org. Lett. 2008, 10, 3595–
3598. (c) Bowers, A.; West, N.; Taunton, J.; Schreiber, S. L.; Bradner,
J. E.; Williams, R. M. J. Am. Chem. Soc. 2008, 130, 11219–11222. (d)
Ghosh, A. K.; Kulkarni, S. Org. Lett. 2008, 10, 3907–3909. (e) Ying, Y.;
Liu, Y.; Byeon, S. R.; Kim, H. S.; Luesch, H.; Hong, J. Org. Lett. 2008,
10, 4021–4024. (f) Seiser, T.; Kamena, F.; Cramer, N. Angew. Chem., Int.
Ed. 2008, 47, 6483–6485. (g) Ren, Q.; Dai, L.; Zhang, H.; Tan, W.; Xu,
Z.; Ye, T. Synlett 2008, 2379–2383. (h) Numajiri, Y.; Takahashi, T.;
Takagi, M.; Shin-ya, K.; Doi, T. Synlett 2008, 2483–2486. (i) Bowers,
A. A.; Greshock, T. J.; West, N.; Estiu, G.; Schreiber, S. L.; Wiest, O.;
Williams, R. M.; Bradner, J. E. J. Am. Chem. Soc. 2009, 131, 2900–2905.
(j) Bowers, A. A.; West, N.; Newkirk, T. L.; Troutman-Youngman,
A. E.; Schreiber, S. L.; Wiest, O.; Bradner, J. E.; Williams, R. M. Org.
Lett. 2009, 11, 1301–1304. (k) Chen, F.; Gao, A.-H.; Li, J.; Nan, F.-J.
ChemMedChem 2009, 4, 1269–1272. (l) Wang, B.; Forsyth, C. J. Synlett
2009, 2873–2880. (m) Zeng, X.; Yin, B.; Hu, Z.; Liao, C. Z.; Liu, J. L.; Li,
S.; Li, Z.; Nicklaus, M. C.; Zhou, G. B.; Jiang, S. Org. Lett. 2010, 12,
1368–1371. (n) Souto, J. A.; Vaz, E.; Lepore, I.; Poppler, A.-C.; Franci,
G.; Alvarez, R.; Altucci, L.; de Lera, A. R. J. Med. Chem. 2010, 53,
4654–4667. (o) Xiao, Q.; Wang, L. P.; Jiao, X. Z.; Liu, X. Y.; Wu, Q.;
Xie, P. J. Asian Nat. Prod. Res. 2010, 12, 940–9. (p) Wang, B.; Huang,
P.-H.; Chen, C.-S.; Forsyth, C. J. J. Org. Chem. 2011, 76, 1140–1150.
(13) (a) Cheng, Y.-Q.; Yang, M.; Matter, A. M. Appl. Environ.
Microbiol. 2007, 73, 3460–3469. (b) Wesener, S. R.; Potharla, V. Y.;
Cheng, Y.-Q. Appl. Environ. Microbiol. 2011, 77, 1501–1507.
(11) Spiruchostatins:(a) Takizawa, T.; Watanabe, K.; Narita, K.;
Oguchi, T.; Abe, H.; Katoh, T. Chem. Commun. 2008, 1677–1679. (b)
Takizawa, T.; Watanabe, K.; Narita, K.; Kudo, K.; Oguchi, T.; Abe, H.;
Katoh, T. Heterocycles 2008, 76, 275–290. (c) Calandra, N. A.; Cheng,
Y. L.; Kocak, K. A.; Miller, J. S. Org. Lett. 2009, 11, 1971–1974. (d)
Narita, K.; Kikuchi, T.; Watanabe, K.; Takizawa, T.; Oguchi, T.; Kudo,
K.; Matsuhara, K.; Abe, H.; Yamori, T.; Yoshida, M.; Katoh, T.
Chem.;Eur. J. 2009, 15, 11174–11186. (e) Fuse, S.; Okada, K.; Iijima,
Y.; Munakata, A.; Machida, K.; Takahashi, T.; Takagi, M.; Shin-ya, K.;
Doi, T. Org. Biomol. Chem. 2011, 9, 3825–3833.
(14) Cheng, Y.-Q. World Patent 98199, 2008.
(15) Enck, S.; Kopp, F.; Marahiel, M. A.; Geyer, A. Org. Biomol.
Chem. 2010, 8, 559–563.
Org. Lett., Vol. 13, No. 24, 2011
6335