Journal of the American Chemical Society
Page 6 of 10
“Greener” Approach towards Facile Synthesis of Organic
Amination Reaction Catalysed by a Supramolecular Rh(II)
1
2
3
4
5
6
7
8
Semiconducting Molecules and Polymers. J. Mater. Chem.
A 2017, 5, 11550.
Complex. Chem. Commun. 2013, 49, 8009. (d) Burg, F.;
Gicquel, M.; Breitenlechner, S.; Pöthig, A.; Bach, T. Site-
and Enantioselective C–H Oxygenation Catalyzed by a
Chiral Manganese Porphyrin Complex with a Remote
Binding Site. Angew. Chem Int. Ed. 2018, 57, 2953.
(2) For recent reviews, see: (a) Chen, Z.; Wang, B.; Zhang, J.;
Yu, W.; Liu, Z.; Zhang, Y. Transition Metal-catalyzed C–
H Bond Functionalizations by the Use of Diverse Directing
Groups. Org. Chem. Front. 2015, 2, 1107. (b) Dey, A.;
Maity, S.; Maiti, D. Reaching the South: Metal-catalyzed
Transformation of the Aromatic Para-position. Chem.
Commun. 2016, 52, 12398. (c) Dey, A.; Agasti, S.; Maiti,
D. Palladium Catalysed Meta-C–H Functionalization
Reactions. Org. Biomol. Chem. 2016, 14, 5440. (d) Ping,
L.; Chung, D. S.; Bouffard, J.; Lee, S. Transition Metal-
catalyzed Site- and Regio-divergent C–H Bond
Functionalization. Chem. Soc. Rev. 2017, 46, 4299.
(8) (a) Nguyen, P.; Blom, H. P.; Westcott, S. A.; Taylor, N. J.;
Marder, T. B. Synthesis and Structures of the First
Transition-metal
Tris(boryl)
Complexes:
Iridium
Complexes (6-arene)Ir(BO2C6H4)3. J. Am. Chem. Soc.
1993, 115, 9329. (b) Iverson, C. N.; Smith III, M. R.
Stoichiometric and Catalytic B–C Bond Formation from
Unactivated Hydrocarbons and Boranes. J. Am. Chem. Soc.
1999, 121, 7696. (c) Cho, J. Y.; Iverson, C. N.; Smith, M.
R. III, Steric and Chelate Directing Effects in Aromatic
Borylation. J. Am. Chem. Soc. 2000, 122, 12868. (d) Cho,
J. Y.; Tse, M. K.; Holmes, D.; Maleczka, Jr., R. E.
Remarkably Selective Iridium Catalysts for the Elaboration
of Aromatic C–H Bonds. Science 2002, 295, 305. (e)
Ishiyama, T.; Tagaki, J.; Ishida, K.; Miyaura, N.; Anastasi,
N. R.; Hartwig, J. F. Mild Iridium-catalyzed Borylation of
Arenes. High Turnover Numbers, Room Temperature
Reactions, and Isolation of a Potential Intermediate. J. Am.
Chem. Soc. 2002, 124, 390. (f) Ishiyama, T.; Tagaki, J.;
Hartwig, J. F.; Miyaura, N. A Stoichiometric Aromatic C–
H Borylation Catalyzed by Iridium(I)/2,2’-Bipyridine
Complexes at Room Temperature. Angew. Chem. Int. Ed.
2002, 41, 3056. For reviews of C–H borylation reactions,
see: (g) Mkhalid, I. A. I.; Barnard, J. H.; Marder, T. B.;
Murphy, J. M.; Hartwig, J. F. C–H Activation for the
Construction of C−B Bonds. Chem. Rev. 2010, 110, 890.
(h) Ros, A.; Fernández, R.; Lassaletta, J. M. Functional
Group Directed C–H Borylation. Chem. Soc. Rev. 2014, 43,
3229. (i) Xu, L.; Wang, G.; Zhang, S.; Wang, H.; Wang,
L.; Liu, L.; Jiao, J.; Li, P. Recent Advances in Catalytic C–
H Borylation Reactions. Tetrahedron 2017, 73, 7123. For
recent works, see: (j) Li, H. L.; Kanai, M.; Kuninobu, Y.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(3) For recent reviews on natural and artificial enzymes-
catalyzed site-selective C–H functionalizations, see: (a)
Schnepel, C.; Sewald, N. Enzymatic Halogenation: a
Timely Strategy for Regioselective C–H Activation. Chem.
Eur. J. 2017, 23, 12064. (b) Upp, D. M.; Lewis, J. C.
Selective C–H Bond Functionalization Using Repurposed
or Artificial Metalloenzymes. Curr. Opin. Chem. Biol.
2017, 37, 48.
(4) For recent reviews on non-covalent interaction-controlled
selective catalytic reactions, see: (a) Das, S.; Brudvig, G.
W.; Crabtree, R. H. Molecular Recognition in
Homogeneous Transition Metal Catalysis: a Biomimetic
Strategy for High Selectivity. Chem. Commun. 2008, 413.
(b) Dydio, P.; Reek, J. N. H. Supramolecular Control of
Selectivity in Transition-metal Catalysis through Substrate
Preorganization. Chem. Sci. 2014, 5, 2135. (c) Davis, H. J.;
Phipps, R. J. Harnessing Non-covalent Interactions to
Exert Control over Regioselectivity and Site-selectivity in
Catalytic Reactions. Chem. Sci. 2017, 8, 864.
(5) (a) Groves, J. T.; Neumann, R. Enzymic Regioselectivity
in the Hydroxylation of Cholesterol Catalyzed by a
Membrane-spanning Metalloporphyrin. J. Org. Chem.
1988, 53, 3891. (b) Breslow, R.; Huang, Y.; Zhang, X.;
Yang, J. An Artificial Cytochrome P450 That
Hydroxylates Unactivated Carbons with Regio- and
Stereoselectivity and Useful CatalyticꢀTurnovers. Proc.
Natl. Acad. Sci. U. S. A. 1997, 94, 11156. (c) Breslow, R.;
Zhang, X.; Huang, Y. Selective Catalytic Hydroxylation of
a Steroid by an Artificial Cytochrome P-450 Enzyme. J.
Am. Chem. Soc. 1997, 119, 4535. (d) Yang, J.; Breslow, R.
Selective Hydroxylation of a Steroid at C-9 by an Artificial
Cytochrome P-450. Angew. Chem. Int. Ed. 2000, 39, 2692.
(e) Breslow, R.; Yang, J.; Yan, J. Biomimetic
Hydroxylation of Saturated Carbons with Artificial
Cytochrome P-450 Enzymes—Liberating Chemistry from
the Tyranny of Functional Groups. Tetrahedron 2002, 58,
653.
Iridium/Bipyridine-catalyzed
ortho-Selective
C–H
Borylation of Phenol and Aniline Derivatives. Org. Lett.
2017, 19, 5944. (k) Liu, L.; Wang, G.; Jiao, J.; Li, P. Sulfur-
directed Ligand-free C–H Borylation by Iridium Catalysis.
Org. Lett. 2017, 19, 6132.
(9) (a)
Darses,
S.;
Genet,
J.-P.
Potassium
Trifluoro(organo)borates: New Perspectives in Organic
Chemistry. Eur. J. Org. Chem. 2003, 4313. (b) Miyaura, N.
Metal-Catalyzed Reactions of Organoboronic Acids and
Esters. Bull. Chem. Soc. Jpn. 2008, 81, 1535. (c) Doucet,
H. Suzuki–Miyaura Cross-coupling Reactions of
Alkylboronic Acid Derivatives or Alkyltrifluoroborates
with Aryl, Alkenyl or Alkyl Halides and Triflates. Eur. J.
Org. Chem. 2008, 2013. (d) Roscales, S.; Csákÿ, A. G.
Transition-metal-free C–C Bond Forming Reactions of
Aryl, Alkenyl and Alkynylboronic Acids and Their
Derivatives. Chem. Soc. Rev. 2014, 43, 8215.
(6) Fang, Z.; Breslow, R. Metal Coordination-directed
Hydroxylation of Steroids with a Novel Artificial P-450
Catalyst. Org. Lett. 2006, 8, 251.
(10) (a) Roosen, P. C.; Kallepalli, V. A.; Chattopadhyay, B.;
Singleton, D. A.; Maleczka, Jr., R. E.; Smith, III, M. R.
Outer-sphere Direction in Iridium C–H Borylation. J. Am.
Chem. Soc. 2012, 134, 11350. (b) Preshlock, S. M.; Plattner,
D. L.; Maligres, P. E.; Krska, S. W.; Maleczka, Jr., R. E.;
Smith, III, M. R. A Traceless Directing Group for C–H
Borylation. Angew. Chem. Int. Ed. 2013, 52, 12915.
(7) (a) Das, S.; Incarvito, C. D.; Crabtree, R. H.; Brudvig, G.
W. Molecular Recognition in the Selective Oxygenation
of Saturated C–H Bonds by a Dimanganese Catalyst.
Science 2006, 312, 1941. (b) Das, S.; Brudvig, G. W.;
Crabtree, R. H. High Turnover Remote Catalytic
Oxygenation of Alkyl Groups:ꢀ How Steric Exclusion of
Unbound Substrate Contributes to High Molecular
Recognition Selectivity. J. Am. Chem. Soc. 2008, 130,
1628. (c) Höke, T.; Herdtweck, E.; Bach, T. Hydrogen-
bond Mediated Regio- and Enantioselectivity in a C–H
(11) (a) Kuninobu, Y.; Ida, H.; Nishi, M.; Kanai, M. A meta-
Selective C–H Borylation Directed by a Secondary
Interaction Between Ligand and Substrate. Nat. Chem.
2015, 7, 712. (b) Davis, H. J.; Genov, G. R.; Phipps, R.
ACS Paragon Plus Environment