and wR2 = 0.1700 for 2678 data with I 4 2s(I). Peptide 2:
C32H42N4O5, Mw = 562.70, orthorhombic, space group Pbcn, a =
19.0609(13), b = 19.6825(14), c = 18.9838(13) A, V = 7122.1(9) A3,
Z = 8, dc = 1.050 Mg mꢁ3, T = 100 K, R1 = 0.0540 and wR2
=
0.1398 for 5064 data with I 4 2s(I). Intensity data were collected with
MoKa radiation for peptide 1 at 296 K and MoKa radiation for
peptide 2 at 100 K using a Bruker APEX-2 CCD diffractometer. Data
were processed using the Bruker SAINT package and the structure
solution and refinement procedures were performed using
SHELX97.19 For peptide 1 non-hydrogen atoms were refined with
anisotropic thermal parameters. For peptide 2, the non-hydrogen
atoms were refined with isotropic thermal parameters due to closely
spaced Cl atoms in the solvent molecule. The PLATON/SQUEEZE
program20 was used on the raw data to generate a new dataset that
removed the scattering contribution of disordered solvent molecule.
Fig. 5 (a) Fluorescence spectra and (b) UV-vis spectra of peptide 2
with different concentrations of sulfamethoxazole added.
1 (a) M. M. Cox and D. L. Nelson, Principles of biochemistry, W.H.
Freeman and Company, New York, 2008; (b) A. Bruce, Molecular
Biology of the Cell, Garland Science, New York, 2008.
strands. Maba(1) of strand A stacks over Maba(2) of strand B
(shortest C–C distance is 3.54 A) and reciprocally.18 The two
molecules related by proper two-fold rotation symmetry generate
a dimer. There is no solvent molecule inside the double helix
channel. In higher order packing each double helical structure
forms an intermolecular hydrogen bond (N4–H4ꢀꢀꢀO5, 2.01(2) A,
2.83(2) A, 161(2)1, ꢁ1/2 + x, 1/2 + y, 1/2 ꢁ z) with four other
double helices (Fig. S8, ESIw) where CHCl3 molecules are
simply filling voids in the crystal lattice.
2 (a) S. Hecht and I. Huc, Foldamers: structure, properties and
applications, Wiley-Vch verlag Gmbh, Weinheim, 2007;
(b) D. Seebach and G. Gardiner, Acc. Chem. Res., 2008,
41, 1366; (c) B. Gong, Acc. Chem. Res., 2008, 41, 1376;
(d) Z.-T. Li, J.-L. Hou and C. Li, Acc. Chem. Res., 2008,
41, 1343; (e) C. M. Goodman, S. Choi, S. Shandler and
W. F. DeGrado, Nat. Chem. Biol., 2007, 3, 252; (f) Z.-T. Li,
J.-L. Hou, C. Li and H.-P. Yi, Chem.–Asian J., 2006, 1, 766;
(g) I. Huc, Eur. J. Org. Chem., 2004, 17.
3 (a) D. J. Hill, M. J. Mio, R. B. Prince, T. S. Hughes and
J. S. Moore, Chem. Rev., 2001, 101, 3893; (b) R. P. Cheng,
S. H. Gellman and W. F. DeGrado, Chem. Rev., 2001, 101, 3219.
4 (a) B. Petersson, B. B. Nielsen, H. Rasmussen, I. K. Larsen,
M. Gajhede, P. E. Nielsen and J. S. Kastrup, J. Am. Chem. Soc.,
2005, 127, 1424; (b) K. Augustyns, F. Vandendriessche, A. Van
Aerschot, R. Busson, C. Urbankel and P. Herdewijn, Nucleic Acids
Moreover, the NMR chemical shift of NH protons with
addition of sulfamethoxazole exhibits that peptide 2 interacts with
a potent bacteriostatic antibiotic sulfamethoxazole (Fig. S9, ESIw).
For further investigation, UV-vis and fluorescence experiments
were performed as it is a very sensitive technique to study the
changes in microenvironment (Fig. 5). Initially the fluorescence
intensity at 375 nm increases with increasing drug concentration.
But, after a certain point, a red shift at 395 nm has been observed,
which indicates a strong interaction between drug molecules and
peptide 2. The fluorescence of sulfamethoxazole interferes with
that of peptide 2. X-Ray quality crystal of the complex is not
obtained.
Res., 1992, 20, 4711; (c) M. Tarkoy and C. Leumann, Angew.
¨
Chem., Int. Ed. Engl., 1993, 32, 1432.
5 J. Li, J. A. Wisner and M. C. Jennings, Org. Lett., 2007, 9, 3267.
6 (a) Y. Tanaka, H. Katagiri, Y. Furusho and E. Yashima, Angew.
Chem., Int. Ed., 2005, 44, 3867; (b) Y. Furusho, Y. Tanaka and
E. Yashima, Org. Lett., 2006, 8, 2583.
7 G. J. Gabriel and B. L. Iverson, J. Am. Chem. Soc., 2002,
124, 15174.
8 H. Goto, H. Katagiri, Y. Furusho and E. Yashima, J. Am. Chem.
Soc., 2006, 128, 7176.
9 D. Haldar and C. Schmuck, Chem. Soc. Rev., 2009, 38, 363.
10 X. Yang and B. Gong, Angew. Chem., Int. Ed., 2005, 44, 1352.
11 (a) V. Berl, I. Huc, R. G. Khoury, M. J. Krische and J.-M. Lehn,
Nature, 2000, 407, 720; (b) Q. Gan, C. Bao, B. Kauffmann,
´
A. Grılard, J. Xiang, S. Liu, I. Huc and H. Jiang, Angew. Chem.,
Int. Ed., 2008, 47, 1715.
12 Q. Gan, Y. Ferrand, C. Bao, B. Kauffmann, A. Grelard, H. Jiang
and I. Huc, Science, 2011, 331, 1172.
13 D. Haldar, H. Jiang, J.-M. Leger and I. Huc, Angew. Chem., Int.
´
In summary, we have shown that the ability of helical
foldamers to form double helices is not restricted to the aromatic
oligoamides but also applies to urea and Boc capped conforma-
tionally constrained peptides. The parallel double helix is stabi-
lized by multiple intermolecular hydrogen bonds as well as p–p
stacking interaction. The capped g-peptides can be considered as
a new molecular scaffold for supramolecular double helix formation
in the solid state. The results presented here may foster new studies
for the design of capped g-peptides leading to cross-hybridization
and sequence-selective recognition.
Ed., 2006, 45, 5483.
14 D. Haldar, H. Jiang, J.-M. Le
´
ger and I. Huc, Tetrahedron, 2007,
63, 6322.
15 B. Baptiste, J. Zhu, D. Haldar, B. Kauffmann, J.-M. Le
I. Huc, Chem.–Asian J., 2010, 5, 1364.
We acknowledge the DST, India, for financial assistance
(Project No. SR/FT/CS-041/2009). S. K. Maity, S. Maity and
P. Jana acknowledge the C.S.I.R, India, for research fellowship.
We are thankful to Dr Raju Mandal, I. A. C. S., Jadavpur,
Kolkata-700032, India, for his assistance in X-ray crystallography
data refinement. We thank the reviewers.
´
ger and
16 (a) M. W. Giuliano, W. S. Horne and S. H. Gellman, J. Am. Chem.
Soc., 2009, 131, 9860; (b) G. Guichard and I. Huc, Chem. Commun.,
2011, 47, 5933.
17 S. K. Maji, R. Banerjee, D. Velmurugan, A. Razak, H. K. Fun and
A. Banerjee, J. Org. Chem., 2002, 67, 633.
18 (a) Q.-Z. Zhou, X.-K. Jiang, X.-B. Shao, G.-J. Chen, M.-X. Jia
and Z.-T. Li, Org. Lett., 2003, 5, 1955; (b) C. Zhan, J.-M. Le
and I. Huc, Angew. Chem., Int. Ed., 2006, 45, 4625.
´
ger
Notes and references
19 G. M. Sheldrick, SHELX 97, University of Gottingen, Germany,
¨
z Crystallographic data: Peptide 1: C25H37N3O4, Mw = 443.58,
triclinic, space group P1, a = 12.4834(8), b = 13.8403(9), c =
14.9746(10) A, a = 91.506(4)1, b = 95.452(4)1, g = 90.632(4)1, V =
2574.4(3) A3, Z = 4, dc = 1.145 Mg mꢁ3, T = 296 K, R1 = 0.0541
1997.
20 P. v. d. Sluis and A. L. Spek, Acta Crystallogr., Sect. A: Found.
Crystallogr., 1990, 46, 194.
c
This journal is The Royal Society of Chemistry 2012
Chem. Commun., 2012, 48, 711–713 713