Organic Letters
Letter
(5) (a) Michaudel, Q.; Thevenet, D.; Baran, P. S. Intermolecular
Ritter-Type C-H Amination of Unactivated sp3 Carbons. J. Am. Chem.
Soc. 2012, 134, 2547−2550. (b) Bloom, S.; Pitts, C. R.; Miller, D. C.;
Haselton, N.; Holl, M. G.; Urheim, E.; Lectka, T. A Polycomponent
Metal-Catalyzed Aliphatic, Allylic, and Benzylic Fluorination. Angew.
Chem., Int. Ed. 2012, 51, 10580−10583.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
(6) Pitts, C. R.; Bloom, S.; Woltornist, R.; Auvenshine, D. J.;
Ryzhkov, L. R.; Siegler, M. A.; Lectka, T. Direct, Catalytic
Monofluorination of sp3 C-H Bonds: A Radical-Based Mechanism
with Ionic Selectivity. J. Am. Chem. Soc. 2014, 136, 9780−9791.
General experimental procedures, characterization data,
spectra for all key compounds, and mechanistic studies
(7) (a) Barreiro, E. J.; Ku
Methylation Effect in Medicinal Chemistry. Chem. Rev. 2011, 111,
̈
mmerle, A. E.; Fraga, C. A. M. The
AUTHOR INFORMATION
■
̈
5215−5246. (b) Schonherr, H.; Cernak, T. Profound Methyl Effects
Corresponding Author
ORCID
in Drug Discovery and a Call for New C-H Methylation Reactions.
Angew. Chem., Int. Ed. 2013, 52, 12256−12267.
(8) Duncton, M. A. J. Minisci Reactions: Versatile CH-
Functionalizations for Medicinal Chemists. MedChemComm 2011,
2, 1135−1161.
Notes
(9) (a) Minisci, F.; Bernardi, R.; Bertini, F.; Galli, R.; Perchinummo,
M. Nucleophilic Character of Alkyl Radicals−VI: A New Convenient
Selective Alkylation of Heteroaromatic Bases. Tetrahedron 1971, 27,
3575−3579. (b) Mai, D. N.; Baxter, R. D. Unprotected Amino Acids
as Stable Radical Precursors for Heterocycle C-H Functionalization.
Org. Lett. 2016, 18, 3738−3741. (c) Cheng, W.-M.; Shang, R.; Fu, Y.
Photoredox/Brønsted Acid Co-Catalysis Enabling Decarboxylative
Coupling of Amino Acid and Peptide Redox-Active Esters with N-
Heteroarenes. ACS Catal. 2017, 7, 907−911. (d) Cheng, W.-M.;
Shang, R.; Fu, M.-C.; Fu, Y. Photoredox-Catalysed Decarboxylative
Alkylation of N-Heteroarenes with N-(Acyloxy)phthalimides. Chem. -
Eur. J. 2017, 23, 2537−2541. (e) Garza-Sanchez, R. A.; Tlahuext-Aca,
A.; Tavakoli, G.; Glorius, F. Visible Light-Mediated Direct
Decarboxylative C-H Functionalization of Heteroarenes. ACS Catal.
2017, 7, 4057−4061. (f) Wang, J.; Li, G.-X.; He, G.; Chen, G.
Photoredox-Mediated Minisci Alkylation of N-Heteroarenes using
Carboxylic Acids and Hypervalent Iodine. Asian J. Org. Chem. 2018, 7,
1307−1310. (g) Genovino, J.; Lian, Y.; Zhang, Y.; Hope, T. O.;
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
Financial support was provided by the “Thousand Plan” Youth
program, the Chinese Academy of Sciences, the Shanghai
Institute of Organic Chemistry, and the CAS Key Laboratory
of Synthetic Chemistry of Natural Substances.
REFERENCES
■
(1) (a) Hartwig, J. F. Evolution of C-H Bond Functionalization from
Methane to Methodology. J. Am. Chem. Soc. 2016, 138, 2−24.
(b) Hartwig, J. F.; Larsen, M. A. Undirected, Homogeneous C-H
Bond Functionalization: Challenges and Opportunities. ACS Cent. Sci.
2016, 2, 281−292. (c) Davies, H. M. L.; Morton, D. Recent Advances
in C-H Functionalization. J. Org. Chem. 2016, 81, 343−350.
(d) Davies, H. M. L.; Morton, D. Collective Approach to Advancing
C−H Functionalization. ACS Cent. Sci. 2017, 3, 936−943. (e) He, J.;
Wasa, M.; Chan, K. S. L.; Shao, Q.; Yu, J.-Q. Palladium-Catalyzed
Transformations of Alkyl C-H Bonds. Chem. Rev. 2017, 117, 8754−
8786. (f) Tang, X.; Jia, X.; Huang, Z. Challenges and Opportunities
for Alkane Functionalisation Using Molecular Catalysts. Chem. Sci.
2018, 9, 288−299.
(2) (a) Newhouse, T.; Baran, P. S. If C-H Bonds Could Talk:
Selective C-H Bond Oxidation. Angew. Chem., Int. Ed. 2011, 50,
3362−3374. (b) White, M. C. Adding Aliphatic C−H Bond
Oxidations to Synthesis. Science 2012, 335, 807−809. (c) Yamaguchi,
J.; Yamaguchi, A. D.; Itami, K. C-H Bond Functionalization:
Emerging Synthetic Tools for Natural Products and Pharmaceuticals.
Angew. Chem., Int. Ed. 2012, 51, 8960−9009. (d) Cernak, T.; Dykstra,
K. D.; Tyagarajan, S.; Vachal, P.; Krska, S. W. The Medicinal
Chemist’s Toolbox for Late Stage Functionalization of Drug-like
Molecules. Chem. Soc. Rev. 2016, 45, 546−576. (e) Karimov, R. R.;
Hartwig, J. F. Transition-Metal-Catalyzed Selective Functionalization
of C(sp3)-H Bonds in Natural Products. Angew. Chem., Int. Ed. 2018,
57, 4234−4241. (f) White, M. C.; Zhao, J. Aliphatic C-H Oxidations
for Late-Stage Functionalization. J. Am. Chem. Soc. 2018, 140, 13988−
14009.
́
Juneau, A.; Gagne, Y.; Ingle, G.; Frenette, M. Metal-Free-Visible Light
C-H Alkylation of Heteroaromatics via Hypervalent Iodine-Promoted
Decarboxylation. Org. Lett. 2018, 20, 3229−3232. (h) Zhang, X.-Y.;
Weng, W.-Z.; Liang, H.; Yang, H.; Zhang, B. Visible-Light-Initiated,
Photocatalyst-Free Decarboxylative Coupling of Carboxylic Acids
with N-Heterocycles. Org. Lett. 2018, 20, 4686−4690. (i) Li, Z.;
Wang, X.; Xia, S.; Jin, J. Ligand-Accelerated Iron Photocatalysis
Enabling Decarboxylative Alkylation of Heteroarenes. Org. Lett. 2019,
(10) (a) Molander, G. A.; Colombel, V.; Braz, V. A. Direct
Alkylation of Heteroaryls Using Potassium Alkyl- and Alkoxymethyl-
trifluoroborates. Org. Lett. 2011, 13, 1852−1855. (b) Li, G.-X.;
Morales-Rivera, C. A.; Wang, Y.; Gao, F.; He, G.; Liu, P.; Chen, G.
Photoredox-Mediated Minisci C-H Alkylation of N-Heteroarenes
Using Boronic Acids and Hypervalent Iodine. Chem. Sci. 2016, 7,
6407−6412. (c) Matsui, J. K.; Molander, G. A. Organocatalyzed,
Photoredox Heteroarylation of 2-Trifluoroboratochromanones via C-
H Functionalization. Org. Lett. 2017, 19, 950−953. (d) Matsui, J. K.;
Primer, D. N.; Molander, G. A. Metal-Free C-H Alkylation of
Heteroarenes with Alkyltrifluoroborates: A General Protocol for 1°,
2° and 3° Alkylation. Chem. Sci. 2017, 8, 3512−3522. (e) Zhang, L.;
Liu, Z.-Q. Molecular Oxygen-Mediated Minisci-Type Radical
Alkylation of Heteroarenes with Boronic Acids. Org. Lett. 2017, 19,
6594−6597.
(3) Chu, J. C. K.; Rovis, T. Complementary Strategies for Directed
C(sp3)-H Functionalization: A Comparison of Transition-Metal-
Catalyzed Activation, Hydrogen Atom Transfer, and Carbene/
Nitrene Transfer. Angew. Chem., Int. Ed. 2018, 57, 62−101.
(4) (a) Capaldo, L.; Ravelli, D. Hydrogen Atom Transfer (HAT): A
Versatile Strategy for Substrate Activation in Photocatalyzed Organic
Synthesis. Eur. J. Org. Chem. 2017, 2017, 2056−2071. (b) Bietti, M.
Activation and Deactivation Strategies Promoted by Medium Effects
for Selective Aliphatic C-H Bond Functionalization. Angew. Chem., Int.
Ed. 2018, 57, 16618−16637.
(11) Smith, J. M.; Dixon, J. A.; deGruyter, J. N.; Baran, P. S. Alkyl
Sulfinates: Radical Precursors Enabling Drug Discovery. J. Med. Chem.
2019, 62, 2256−2264.
(12) DiRocco, D. A.; Dykstra, K.; Krska, S.; Vachal, P.; Conway, D.
V.; Tudge, M. Late-Stage Functionalization of Biologically Active
Heterocycles Through Photoredox Catalysis. Angew. Chem., Int. Ed.
2014, 53, 4802−4806.
(13) (a) Jin, J.; MacMillan, D. W. C. Alcohols as Alkylating Agents
in Heteroarene C-H Functionalization. Nature 2015, 525, 87−90.
E
Org. Lett. XXXX, XXX, XXX−XXX