4
Tetrahedron
Conclusions
secondary benzamides. Modest (6/1) to good (9/1) selectivities
between primary aromatic (1a) and aliphatic (1e) amides as well
as secondary benzamides 3a and 3d could be achieved,
respectively.
In summary, we have demonstrated that mechanochemistry
via ball-milling could not only enable an environmentally benign
N-tert-butoxycarbonylation of amides under solvent-free
conditions but also make the amide activation more
chemoselective with respect to the NH acidity. Primary amides
reacted to directly give di-Boc imides without isolable mono-Boc
intermediates. Secondary amides reacted much more slowly than
primary ones unless bearing an electron-donating group on NH
moiety. Indeed, a high chemoselectivity could be effected not
only between the primary and secondary amides, but also among
secondary ones with NH substituted by electronically various
substituents. Selective esterification of amides via one-pot two-
step procedure has been demonstrated to be feasible in the model
reaction of benzamides with p-cresol and benzyl alcohol under
solvent-free ball-milling conditions.
O
1.3equiv. (Boc)2O
5mol% DMAP
O
R
R'
Ph
N
Ph
N
A:
H
, 30Hz, 2h
Boc
1a
R = H (
)
2a
4a
R' = Boc ( ), 98%
R' = Me ( ), trace
1a 3a
/
= 1/1
3a
R = Me (
)
O
O
1.3equiv. (Boc)2O
5mol% DMAP
Boc
R
N
R
NH2
B:
C:
, 30Hz, 2h
Boc
, 95%
, 16%
2a
2e
1a 1e
/
= 1/1
1a
R = Ph (
R = PhCH2CH2(
)
1e
)
O
R
0.6equiv. (Boc)2O
10mol% DMAP
O
Acknowledgments
R
Ph
N
Ph
N
H
, 30Hz, 2h
Boc
, 10%
, 94%
We are grateful for financial support provided by the National
Natural Science Foundation of China (21472041).
4a
4d
3a
R = Me (
R = CH2CO2Me (
)
3a 3d
/
= 1/1
3d
)
Scheme 1. Competition of amides
References and notes
Direct transamidation of N-Boc activated amides is known
[20, 36]. Comparably, reaction of N-Boc activated amides with
the less reactive oxygen-centered nucleophiles, i.e. phenols and
alcohols, requires either use of pre-formed oxygen anions or
assistance from catalysts [19-21, 37, 38]. We anticipated that, in
1.
2.
3.
Sheldon R. A. Green Chem. 2007, 9, 1273-1283.
Tanaka, K.; Toda, F. Chem. Rev. 2000, 100, 1025-1074.
Martins, M. A. P.; Frizzo, C. P.; Moreira, D. N.; Buriol, L.;
Machado, P. Chem. Rev. 2009, 109, 4140-4182.
Takacs, L. Chem. Soc. Rev. 2013, 42, 7649-7659.
James, S. L.; Adams, C. J.; Bolm, C.; Braga, D.; Collier, P.;
Friščić, T.; Grepioni, F.; Harris, K. D. M.; Hyett, G.; Jones, W.;
Krebs, A.; Mack, J.; Maini, L.; Orpen, A. G.; Parkin, I. P.;
Shearouse, W. C.; Steed, J. W.; Waddell, D. C. Chem. Soc. Rev.
2012, 41, 413-447.
Wang, G.-W. Chem. Soc. Rev. 2013, 42, 7668-7700.
Hernández, J. G.; Friščić, T. Tetrahedron Lett. 2015, 56, 4253-
4265.
Do, J.-L.; Friščić, T. ACS Cent. Sci. 2017, 3, 13-19.
Do, J.-L.; Friščić, T. Synlett. 2017, 28, 2066-2092.
4.
5.
high-yielding
cases
of
the
solvent-free
N-tert-
butoxycarbonylation, efficient one-pot two-step esterification of
amides with the oxygen-centered nucleophiles should be feasible
in telescope manner. Indeed, the amide activation / esterification
sequential transformation could be efficiently effected in the
model reaction of primary and secondary benzamides with p-
cresol or benzyl alcohol under the solvent- and catalyst-free ball-
milling conditions (Scheme 2).
6.
7.
8.
9.
10. Howard, J. L.; Cao, Q.; Browne, D. L. Chem. Sci. 2018, 9, 3080-
3094.
11. Andersen, J.; Mack, J. Green Chem. 2018, 20, 1435-1443.
12. Robertson, J. C.; Coote M. L.; Bissember, A. C. Nat. Rev. Chem.
2019, 3, 290-304.
O
1.0equiv.p-cresol
2.0equiv.K2CO3
Ph
3a
OTolyl-p
3f
1a
from , 92%; , 90%; , 95%
13. Friščić, T.; Mottillo, C.; Titi, H. M. Angew. Chem. Int. Ed. 2020,
59, 1018-1029.
1.2-2.5equiv.
Boc2O
O
O
1.0equiv.BnOH
2.0equiv.Cs2CO3
R
14. Hernández, J. G.; Bolm, C. J. Org. Chem. 2017, 82, 4007-4019.
15. Boldyreva, E. Chem. Soc. Rev. 2013, 42, 7719-7738.
16. Baláž, P.; Achimovičová, M.; Baláž, M.; Billik, P.; Cherkezova-
Zheleva, Z.; Criado, J. M.; Delogu, F.; Dutková, E.; Gaffet, E.;
Gotor, F. J.; Kumar, R.; Mitov, I.; Rojac, T.; Senna, M.;
Streletskii, A.; Wieczorek-Ciurowa, K. Chem. Soc. Rev. 2013, 42,
7571-7637.
17. Crawford, D. E.; Miskimmin, C. K. G.; Albadarin, A. B.; Walker,
G.; James, S. L. Green Chem. 2017,19, 1507-1518.
18. The Amide Linkage. Selected Structural Aspects in Chemistry,
Biochemistry and Materials Science, Eds.: Greenberg, A.;
Breneman, C. M.; Liebman, J. F. John Wiley & Sons, New York,
2000.
Ph
N
Ph
3a
OBn
3f
H
5-30mol%
DMAP
, 30Hz
2-4h
1a
from , 69%; , 60%; , 65%
O
1.0equiv.
n-C6H13OH
Ph
OnC6H13
no reaction
1a
R = H (
)
2.0equiv.Cs2CO3
3a
R = Me (
)
3f
R = CH2CO2Me (
)
, 30Hz, 2h
Scheme 2. Demonstration of one-pot two-step chemoselective
esterification of amides
19. Flynn, D. L.; Zelle, R. E.; Grieco, P. A. J. Org. Chem. 1983, 48,
2424-2426.
20. Davidsen, S. K.; May, P. D.; Summers, J. B. J. Org. Chem. 1991,
56, 5482-5485.
21. Hie, L.; Nathel, N. F. F.; Shah, T. K.; Baker, E. L.; Hong, X.;
Yang, Y.-F.; Liu, P.; Houk, K. N.; Garg, N. K. Nature, 2015,
524,79-83.
22. Meng, G.; Szostak, M. Org Lett. 2015, 17, 4364-4367.
23. Li, X.; Zou, G. Chem. Commun. 2015, 51, 5089-5092.
24. Pace, V.; Holzer, W.; Olofsson, B. Adv. Synth. Catal. 2014, 356,
3697-3736.
In typical procedure, after milling a mixture of benzamide (1a)
with 2.5 equiv. Boc2O and 5 mol% DMAP for 2h, 1.0 equiv. p-
cresol and 2.0 equiv. K2CO3 were added to the mixture and
milled for another 2h to give the corresponding ester in 92%
yield. Secondary amides (3a) and (3f) could also be used in the
one-pot two-step esterification procedure although the first step
of N-tert-butoxycarbonylation required longer reaction time (4h)
and higher loadings of DMAP, 30 mol% and 10 mol%,
respectively, to convert the secondary amides completely. The
esterification of benzyl alcohol needed stronger base Cs2CO3
while no reaction occurred for n-hexanol unless use of Cs2CO3 in
DMSO solvent [38].
25. Kaiser, D.; Maulide, N. J. Org. Chem. 2016, 81, 4421-4428.
26. Li, G.; Szostak, M. Chem. Rec. 2019, 19, 1-12.
27. Meng, G.; Shi, S.; Szostak, M. Synlett. 2016, 27, 2530-2540.