Synthesis and Electrochemical Properties of Silyl–Molybdenum Complexes
aba, M. Tsukamoto, T. Hirata, C. Kabuto, H. Horino, J. Am.
Chem. Soc. 2000, 122, 11511–11512.
a) M. Hirotsu, T. Nunokawa, K. Ueno, Organometallics 2006,
25, 1554–1556; b) K. Ueno, A. Masuko, H. Ogino, Organome-
tallics 1999, 18, 2694–2699.
(CMe), 71.76 (C5H4Si), 73.98 (C5H4Si), 79.69 (C5H4Si-ipso), 104.27
(CMe), 229.83 (CO), 234.20 (CO) ppm. C40H50FeMo2O6Si2
(930.73): calcd. C 51.62, H 5.41; found C 51.88, H 5.41.
[5]
[Cp*Mo(CO)3(SiMe2RcЈMe2Si)(CO)3MoCp*] (RcЈ
= C5H4Ru-
C5H4) (6): In a procedure analogous to that outlined above,
[Cp*(CO)3Mo(Me)] (1.28 mmol, 423 mg) and HSiMe2RcЈMe2SiH
(0.64 mmol, 221 mg) gave 6 (0.26 mmol, 260 mg, 42%) as a pale
orange powder. Colorless crystals of complex 6 that were suitable
for an X-ray diffraction study were obtained by cooling a CH2Cl2/
hexane solution to –60 °C for a few days. 1H NMR (400 MHz,
C6D6): δ = 0.86 (s, 12 H, SiMe), 1.62 (s, 30 H, CMe), 4.73 (app. t,
JH,H = 1.6 Hz, 4 H, C5H4Si), 4.92 (app. t, JH,H = 1.6 Hz, 4 H,
C5H4Si) ppm. 13C{1H} NMR (100.4 MHz, C6D6): δ = 5.73 (SiMe),
10.75 (CMe), 73.50 (br., C5H4Si), 75.95 (br., C5H4Si), 84.02
(C5H4Si-ipso), 104.23 (CMe), 230.03 (CO), 234.36 (CO) ppm.
C40H50Mo2O6RuSi2 (975.95): calcd. C 49.23, H 5.16; found C
49.02, H 5.22.
[6]
a) D. J. Cardin, S. A. Keppie, M. F. Lappert, J. Chem. Soc. A
1970, 2594–2598; b) W. Malisch, H. Schidbaur, M. Kuhn, An-
gew. Chem. 1972, 84, 538; Angew. Chem. Int. Ed. Engl. 1972,
11, 516–517; c) W. Malisch, R. Lankat, O. Fey, J. Reising, S.
Schmitzer, J. Chem. Soc., Chem. Commun. 1995, 1917–1919; d)
W. Palitzsch, U. Böhme, G. Roewer, J. Organomet. Chem. 1997,
540, 83–88; e) W. Malisch, H. Jehle, D. Schumacher, M.
Binnewies, N. Söger, J. Organomet. Chem. 2003, 667, 35–41; f)
B. Stadelmann, P. Lassacher, H. Stueger, E. Hengge, J. Or-
ganomet. Chem. 1994, 482, 201–206; g) B. V. Mork, T. D. Tilley,
A. J. Schultz, J. A. Cowan, J. Am. Chem. Soc. 2004, 126,
10428–10440; h) E. Hengge, M. Eibl, F. Schrank, J. Organomet.
Chem. 1989, 369, C23–C26; i) D. H. Berry, J. H. Mitstifer, J.
Am. Chem. Soc. 1987, 109, 3777–3778; j) P. Gusbeth, H. Vah-
renkamp, Chem. Ber. 1985, 118, 1143–1153.
Crystal Structure Determination: Crystals of 1, 5, and 6 that were
suitable for X-ray diffraction studies were separately mounted in a
glass capillary. The data were collected at 120 K for 1 and 5 and
at 200 K for 6 with a Rigaku AFC-7/Mercury CCD area-detector
diffractometer that was equipped with monochromated Mo-Kα ra-
diation (Table 2). All of the calculations were performed with the
CrystalClear software package from Molecular Structure Corpora-
tion. A full-matrix least-squares refinement was used for the non-
hydrogen atoms with anisotropic thermal parameters. The hydro-
gen atoms were located by assuming ideal geometry and were in-
cluded in the structure calculation without further refinement of
the parameters. CCDC-707638 (for 1), -707639 (for 5) and -755066
(for 6) contain the supplementary crystallographic data for this
paper. These data can be obtained free of charge from The Cam-
bridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/
data_request/cif.
[7]
a) P. Apodaca, M. Kumar, F. Cervantes-Lee, H. K. Sharma,
K. H. Pannell, Organometallics 2008, 27, 3136–3141; b) A. C.
Filippou, J. G. Winter, G. Kociok-Köhn, I. Hinz, J. Organomet.
Chem. 1997, 542, 35–49.
C. Roger, M. J. Tudoret, V. Guerchais, C. Lapinte, J. Or-
ganomet. Chem. 1989, 365, 347–350.
[8]
[9]
R. Jain, H. Choi, R. A. Lalancette, J. Sheridan, Organometal-
lics 2005, 24, 1468–1476.
[10]
a) M. Kumar, F. Cervantes-Lee, K. H. Pannell, J. Shao, Orga-
nometallics 2008, 27, 4739–4748; b) A. Berenbaum, F. Jäkle,
A. J. Lough, I. Manners, Organometallics 2001, 20, 834–843; c)
K. H. Pannell, H. Sharma, Organometallics 1991, 10, 954–959.
R. J. P. Corriu, N. Devylder, C. Guérin, B. Henner, A. Jean,
Organometallics 1994, 13, 3194–3202.
[11]
[12] a) M. Akita, T. Oku, M. Tanaka, Y. Moro-oka, Organometal-
lics 1991, 10, 3080–3089; b) W. Jetz, W. A. G. Graham, J. Am.
Chem. Soc. 1969, 91, 3375–3376; c) W. Jetz, W. A. G. Graham,
Inorg. Chem. 1971, 10, 4–9; d) W. Jetz, W. A. G. Graham, Inorg.
Chem. 1971, 10, 1159–1165; e) H. Brunner, K. Fisch, J. Or-
ganomet. Chem. 1991, 412, C11–C13; f) K. Ueno, S. Seki, H.
Ogino, Chem. Lett. 1993, 12, 2159–2162; g) Y. Kawano, H.
Tobita, H. Ogino, J. Organomet. Chem. 1992, 428, 125–143; h)
C. L. Randolph, M. S. Wrighton, J. Am. Chem. Soc. 1986, 108,
3366–3374; i) K. Ueno, H. Tobita, S. Seki, H. Ogino, Chem.
Lett. 1993, 1723–1726; j) L. Manojlovic-Muir, K. W. Muir,
J. A. Ibers, Inorg. Chem. 1970, 9, 447–452; k) R. A. Smith, M. J.
Bennett, Acta Crystallogr., Sect. B 1977, 33, 1118–1122; l) T.
Sato, H. Tobita, H. Ogino, Chem. Lett. 2001, 854–855; m) M.
Itazaki, K. Ueda, H. Nakazawa, Angew. Chem. 2009, 121,
3363; Angew. Chem. Int. Ed. 2009, 48, 3313–3316; Angew.
Chem. Int. Ed. 2009, 48, 6938.
Acknowledgments
This work was supported by a Challenging Explorating Research
(No. 23655056) and by a Grant-in-Aid for Young Scientists (B)
(No. 23750063) from the Ministry of Education, Culture, Sports,
Science and Technology, Japan.
[1] For example: a) M. J. MacLachlan, M. Ginzburg, N. Coombs,
T. W. Coyle, N. P. Raju, J. E. Greedan, G. A. Ozin, I. Manners,
Science 2000, 287, 1460–1463; b) I. Manners, Chem. Commun.
1999, 857–865; c) P. Nguyen, P. Gómez-Elipe, I. Manners,
Chem. Rev. 1999, 99, 1515–1548.
[2] a) H. Wagner, J. Baumgartner, C. Marschner, Organometallics
2007, 26, 1762–1770; b) M. Itazaki, O. Kitami, M. Tanabe, Y.
[13] For a theoretical study, see: S. F. Vyboishchikov, G. I. Nikonov,
Chem. Eur. J. 2006, 12, 8518–8533.
Nishihara, K. Osakada, J. Organomet. Chem. 2005, 690, 3957– [14] a) H. K. Sharma, K. H. Pannell, Chem. Rev. 1995, 95, 1351–
3962; c) S. Kotani, T. Tanizawa, T. Adachi, T. Yoshida, K. Son-
ogashira, Chem. Lett. 1994, 1665–1668; d) S. Kotani, T. Taniz-
awa, K. Shiina, K. Sonogashira, Chem. Lett. 1990, 1889–1892;
e) E. Colomer, R. J. P. Corriu, R. Pleixats, J. Organomet. Chem.
1990, 381, C1–C6.
1374; b) J. Y. Corey, J. Braddock-Wilking, Chem. Rev. 1999, 99,
175–292.
[15] The reference electrode used was: Ag/0.01 m AgPF6, 0.1 m
nBu4NPF6 (MeCN).
[16] J. Okuda, R. W. Albach, E. Herdtweck, Polyhedron 1991, 10,
[3] a) Y. Kawano, T. Yasue, M. Shimoi, J. Am. Chem. Soc. 1999,
121, 11744–11750; b) H. Nakazawa, M. Itazaki, M. Ohba, J.
Organomet. Chem. 2007, 692, 201–207; c) H. Nakazawa, M.
Ohba, M. Itazaki, Organometallics 2006, 25, 2903–2905.
[4] a) E. Suzuki, T. Komuro, M. Okazaki, H. Tobita, Organometal-
lics 2009, 28, 1791–1799; b) H. Sakaba, T. Hirata, C. Kabuto,
K. Kabuto, Organometallics 2006, 25, 5145–5150; c) E. Suzuki,
M. Okazaki, H. Tobita, Chem. Lett. 2005, 34, 1026–1027; d)
T. Watanabe, H. Hashimoto, H. Tobita, Angew. Chem. 2004,
116, 220; Angew. Chem. Int. Ed. 2004, 43, 218–221; e) H. Sak-
1741–1748.
[17] a) T. Kuwana, D. E. Bublitz, G. Hoh, J. Am. Chem. Soc. 1960,
82, 5811–5817; b) S. P. Gubin, S. A. Smirnova, L. I. Denisov-
ich, A. A. Lubovich, J. Organomet. Chem. 1971, 30, 243–255;
c) L. I. Denisovich, N. V. Zakurin, A. A. Bazrukova, S. P. Gu-
bin, J. Organomet. Chem. 1974, 81, 207–216; d) S. V. Kukhar-
enko, A. A. Bezrukova, A. Z. Rubezhov, V. Strelets, Metalloorg.
Khim. 1990, 3, 634–638.
Received: August 19, 2011
Published Online: November 8, 2011
Eur. J. Inorg. Chem. 2011, 5496–5501
© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjic.org
5501