C. D. Donner, M. I. Casana / Tetrahedron Letters 53 (2012) 1105–1107
1107
MeO
MeO
MeO
MeO
MeO
MeO
O
CO2Me
O
O
OH
OH
a,b
c
d
CO2Me
CHO
22
CHO
MeO
MeO
23
20
21
e
OTMS
OMe
26
O
MeO
MeO
O
O
O
O
O
O
f
MeO
g
MeO
O
O
O
MeO
O
O
O
27
25
24
Scheme 5. Reagents and conditions: (a) 3,4-dihydro-2H-pyran, HCl; (b) n-BuLi, DMF, THF, ꢁ70 °C to rt, 3 h, then 6 M HCl (60%, 2 steps); (c) methyl 4-bromocrotonate, K2CO3,
DMF, 20 h (80%); (d) t-C12H25SH (3.0 equiv), ABCN (1.5 equiv), PhCl, 100 °C, 18 h (64%); (e) CeCl3ꢂ7H2O, NaBH4, CH2Cl2, MeOH, ꢁ78 °C, 1 h, then pTsOHꢂH2O, CHCl3 (83%); (f)
PIFA, MeCN, H2O, 1 h (76%); (g) CH2Cl2, 2 h, then SiO2, air, 1 h (55%).
Cai, P.; Levin, J. I.; Mansour, T. S.; Gibbons, J. J.; Abraham, R. T.; Yu, K. Mol. Cancer
Ther. 2007, 6, 3028–3038; (b) Salaski, E. J.; Krishnamurthy, G.; Ding, W.-D.; Yu,
K.; Insaf, S. S.; Eid, C.; Shim, J.; Levin, J. I.; Tabei, K.; Toral-Barza, L.; Zhang, W.-
(2), has been realized using an acyl radical cyclization and stereose-
lective reduction strategy. In addition, the tin-free acyl radical cycli-
zation conditions have been applied to the formal synthesis of
frenolicin B (1). The key radical-mediated hydroacylation step in this
strategy demonstrates an operationally simple alternative to the io-
G.; McDonald, L. A.; Honores, E.; Hanna, C.; Yamashita, A.; Johnson, B.; Li, Z.;
Laakso, L.; Powell, D.; Mansour, T. S. J. Med. Chem. 2009, 52, 2181–2184.
7. Brimble, M. A.; Duncalf, L. J.; Nairn, M. R. Nat. Prod. Rep. 1999, 16, 267–281.
8. Moore, H. W. Science 1977, 197, 527–532.
nic Stetter reaction for the formation of c-ketoesters.
9. Roberts, B. P. Chem. Soc. Rev. 1999, 28, 25–35.
10. Yoshikai, K.; Hayama, T.; Nishimura, K.; Yamada, K.; Tomioka, K. J. Org. Chem.
2005, 70, 681–683.
11. Aitken, H. M.; Schiesser, C. H.; Donner, C. D. Aust. J. Chem. 2011, 64, 409–415.
12. Ciganek, E. Synthesis 1995, 1311–1314.
Acknowledgments
Financial support from the Australian Research Council through
the Centres of Excellence program is gratefully acknowledged. Pro-
fessor Carl Schiesser, The University of Melbourne, and Professor
Philippe Renaud, University of Berne, are acknowledged for useful
discussions.
13. Representative procedure for acyl radical cyclization: A solution of benzaldehyde
7
(0.91 mmol) in PhCl (10 mL) with ABCN (1.37 mmol) and t-C12H25SH
(2.73 mmol) was flushed with argon for 30 min then heated at 100 °C for
20 h. After removal of the solvent in vacuo, purification by column
chromatography (EtOAc–PE, 1:2) gave benzopyran
9 (136 mg, 68% [92%
based on recovered 7]) and recovered benzaldehyde 7 (52 mg, 26%).
14. Hobson, S. J.; Parkin, A.; Marquez, R. Org. Lett. 2008, 10, 2813–2816.
15. Bentley, J.; Nilsson, P. A.; Parsons, A. F. J. Chem. Soc., Perkin Trans. 1 2002, 1461–
1469.
Supplementary data
16. Fielding, A. J.; Roberts, B. P. Tetrahedron Lett. 2001, 42, 4061–4064.
17. (a) Escoubet, S.; Gastaldi, S.; Timokhin, V. I.; Bertrand, M. P.; Siri, D. J. Am. Chem.
Soc. 2004, 126, 12343–12352; (b) Escoubet, S.; Gastaldi, S.; Vanthuyne, N.; Gil,
G.; Siri, D.; Bertrand, M. P. Eur. J. Org. Chem. 2006, 3242–3250.
18. Wriede, U.; Fernandez, M.; West, K. F.; Harcourt, D.; Moore, H. W. J. Org. Chem.
1987, 52, 4485–4489.
19. Tohma, H.; Morioka, H.; Harayama, Y.; Hashizume, M.; Kita, Y. Tetrahedron Lett.
2001, 42, 6899–6902.
20. Tapia, R. A.; Algería, L.; Valderrama, J. A.; Cortés, M.; Pautet, F.; Fillion, H.
Tetrahedron Lett. 2001, 42, 887–889.
Supplementary data associated with this article can be found, in
References and notes
1. For recent reviews, see: (a) Rowlands, G. J. Tetrahedron 2010, 66, 1593–1636;
(b) Rowlands, G. J. Tetrahedron 2009, 65, 8603–8655.
2. (a) Girard, P.; Namy, J. L.; Kagan, H. B. J. Am. Chem. Soc. 1980, 102, 2693–2698;
(b) Enholm, E. J.; Prasad, G. Tetrahedron Lett. 1989, 30, 4939–4942.
21. Kraus, G. A.; Li, J.; Gordon, M. S.; Jensen, J. H. J. Am. Chem. Soc. 1993, 115, 5859–
5860.
22. Selected physical and spectroscopic data for 27: mp 225–230 °C; 1H NMR
(CDCl3, 500 MHz) d 2.36 (1H, d, J 16.0 Hz), 2.93 (2H, m), 3.82 (1H, m), 3.96 (3H,
s), 3.97 (3H, s), 4.51 (1H, dd, J 11.6, 4.9 Hz), 5.53 (1H, d, J 5.3 Hz), 6.70 (1H, d, J
2.5 Hz), 7.33 (1H, d, J 2.5 Hz); 13C NMR (CDCl3, 125 MHz) d 31.1 (CH2), 31.8
(CH), 56.1, 56.5 (CH3), 66.0 (CH2), 68.5, 103.7, 103.9 (CH), 113.2, 114.7, 136.0,
158.2, 162.6, 165.6, 174.0, 175.8, 182.5 (C); IR (neat) 2949, 1767, 1665, 1631,
1595, 1336, 1236, 1217, 1160 cmꢁ1; HRMS (ESI) found 331.0813, C17H15O7
[M+H]+ requires 331.0812.
3. (a) Srikanth, G. S. C.; Castle, S. L. Tetrahedron 2005, 61, 10377–10441; (b)
Edmonds, D. J.; Johnston, D.; Procter, D. J. Chem. Rev. 2004, 104, 3371–3403; (c)
Jasperse, C. P.; Curran, D. P.; Fevig, T. L. Chem. Rev. 1991, 91, 1237–1286.
4. (a) Donner, C. D. Tetrahedron Lett. 2007, 48, 8888–8890; (b) Tewierik, L. M.;
Dimitriadis, C.; Donner, C. D.; Gill, M.; Willems, B. Org. Biomol. Chem. 2006, 4,
3311–3318; (c) Donner, C. D.; Gill, M. J. Chem. Soc., Perkin Trans. 1 2002, 938–948.
5. Donner, C. D. Synthesis 2010, 415–420.
6. (a) Toral-Barza, L.; Zhang, W.-G.; Huang, X.; McDonald, L. A.; Salaski, E. J.;
Barbieri, L. R.; Ding, W.-D.; Krishnamurthy, G.; Hu, Y. B.; Lucas, J.; Bernan, V. S.;