and J. H. van Boom, Tetrahedron, 1993, 49, 6501–6514;
(d) D. J. Hou, H. A. Taha and T. L. Lowary, J. Am. Chem. Soc.,
2009, 131, 12937–12948; (e) I. Lundt and B. Skelbaek-Pedersen, Acta
Chem. Scand., Ser. B, 1981, 35, 637–642.
4 K. Pachamuthu and R. R. Schmidt, Chem. Rev., 2006, 106, 160–187.
5 (a) J.-H. Kim, H. Yang, J. Park and G.-J. Boons, J. Am. Chem.
Soc., 2005, 127, 12090–12097; (b) T. J. Boltje, J.-H. Kim, J. Park
and G.-J. Boons, Org. Lett., 2011, 13, 284–287; (c) M. A. Fascione,
S. J. Adshead, S. A. Stalford, C. A. Kilner, A. G. Leach and W. B.
Turnbull, Chem. Commun., 2009, 5841–5843; (d) M. A. Fascione,
C. A. Kilner, A. G. Leach and W. B. Turnbull, Chem.–Eur. J.,
2012, 18, 321–333; (e) D. J. Cox and A. J. Fairbanks, Tetrahedron:
Asymmetry, 2009, 20, 773–780.
6 S. A. Stalford, C. A. Kilner, A. G. Leach and W. B. Turnbull, Org.
Biomol. Chem., 2009, 7, 4842–4852.
7 (a) A. C. West and C. Schuerch, J. Am. Chem. Soc., 1973, 95,
1333–1335; (b) L. H. Sun, P. Li and K. Zhao, Tetrahedron Lett.,
1994, 35, 7147–7150; (c) J. Park, S. Kawatkar, J.-H. Kim and
G.-J. Boons, Org. Lett., 2007, 9, 1959–1962; (d) T. Nokami,
Y. Nozaki, Y. Saigusa, A. Shibuya, S. Manabe, Y. Ito and
J. Yoshida, Org. Lett., 2011, 13, 1544–1547; (e) L. K. Mydock,
M. N. Kamat and A. V. Demchenko, Org. Lett., 2011, 13,
2928–2931; (f) T. Nokami, A. Shibuya, S. Manabe, Y. Ito and
J. Yoshida, Chem.–Eur. J., 2009, 15, 2252–2255.
8 M. G. Beaver, S. B. Billings and K. A. Woerpel, J. Am Chem. Soc.,
2008, 130, 2082–2086.
9 (a) L. Ayala, C. G. Lucero, J. A. C. Romero, S. A. Tabacco and K. A.
Woerpel, J. Am. Chem. Soc., 2003, 125, 15521–15528; (b) C. G. Lucero
and K. A. Woerpel, J. Org. Chem., 2006, 71, 2641–2647.
10 H. H. Jensen and M. Bols, Acc. Chem. Res., 2006, 39, 259–265.
11 (a) D. Crich and L. Li, J. Org. Chem., 2009, 74, 773–781;
(b) S. Picard and D. Crich, Chimia, 2011, 65, 59–64.
12 (a) T. Ikeda and H. Yamada, Carbohydr. Res., 2000, 329, 889–893;
(b) Y. J. Lee, A. Ishiwata and Y. Ito, J. Am. Chem. Soc., 2008, 130,
6330–6331; (c) E. S. H. El Ashry, N. Rashed and E. S. I. Ibrahim,
Tetrahedron, 2008, 64, 10631–10648.
13 (a) B. Yu and H. Tao, Tetrahedron Lett., 2001, 42, 2405–2407;
(b) B. Yu and J. Sun, Chem. Commun., 2010, 46, 4668–4679.
14 W. R. Roush and C. E. Bennett, J. Am. Chem. Soc., 1999, 121,
3541–3542.
15 J. Dinkelaar, A. R. de Jong, R. van Meer, M. Somers, G. Lodder,
H. S. Overkleeft, J. D. C. Codee and G. A. van der Marel, J. Org.
´
Scheme 3 Assembly of a Xanthomonas campestris tetrasaccharide.
a- and b-D-rhamnosides (Scheme 3). Tetrasaccharide 37
represents two repeating units of the O-specific polysaccharide
of the LPS of the phytopathogen Xanthomonas campestris
pathovar campestris,21 the causative agent of a devastating
disease affecting cruciferous crops such as cabbage and broccoli.22
The synthesis of 37 started with the condensation of 6-S-Ph
mannoside 28 and rhamnosyl acceptor 29. To keep the
stereoelectronic effects in building block 28 as similar as
possible to those in donor 8, we used a naphth-2-ylmethyl ether
as a selectively removable protecting group at the C-3 of 28.
Disaccharide 30 was obtained in 72% yield, highlighting the
b-directing capacities of the 6-S-phenyl group in donor 28.
Removal of the naphth-2-ylmethyl ether liberated the C-300-OH,
which was glycosylated with rhamnoside 32 to provide the
a-linked trimer 33, by virtue of the participating acetyl function in
donor 32. Deacetylation of 33 then set the stage for the introduction
of the second b-mannosidic bond. Reaction of the trimer acceptor
and mannosyl donor 8 at ꢀ60 1C led to the formation of the target
tetramer 35, which was obtained as a mixture of anomers, in which
the desired b-isomer prevailed (82%, a/b = 1 : 3). This result
shows that also elaborate acceptors can be b-mannosylated with
productive selectivity. Desulfurization of tetramer 35 under the
agency of Raney-nickel proceeded uneventfully to deliver the
perbenzylated tetrarhamnoside 36 in 96% yield. Reductive removal
of all benzyl ethers completed the synthesis of tetramer 37.
Chem., 2009, 74, 4982–4991.
16 (a) D. Crich and S. Sun, J. Am. Chem. Soc., 1997, 119, 11217–11223;
(b) D. Crich, J. Carbohydr. Chem., 2002, 21, 667–690.
17 (a) J. Y. Baek, B.-Y. Lee, M. G. Jo and K. S. Kim, J. Am. Chem.
Soc., 2009, 131, 17705–17713; (b) M. T. C. Walvoort, G. Lodder,
J. Mazurek, H. S. Overkleeft, J. D. C. Code
Marel, J. Am. Chem. Soc., 2009, 131, 12080–12081; (c) M. T. C.
Walvoort, G. Lodder, H. S. Overkleeft, J. D. C. Codee and
G. A. van der Marel, J. Org. Chem., 2010, 75, 7990–8002.
18 (a) B. A. Garcia, J. L. Poole and D. Y. Gin, J. Am. Chem. Soc.,
1997, 119, 7597–7598; (b) J. D. C. Codee, L. J. van den Bos,
´
e and G. A. van der
´
In conclusion, the installation of a thiophenyl ether at C-6 of
a mannosyl donor leads to a 1,2-cis-mannosylating agent, which
can be used as a precursor in the synthesis of b-D-rhamnosides.
The stereoselectivity in the cis-mannosylation reaction can be
rationalized with a Curtin–Hammett kinetic scenario in which
´
R. E. J. N. Litjens, H. S. Overkleeft, J. H. van Boom and G. A.
van der Marel, Org. Lett., 2003, 5, 1947–1950.
19 (a) J. D. C. Code
H. S. Overkleeft, J. H. van Boom and G. A. van der Marel,
Tetrahedron, 2004, 60, 1057–1064; (b) J. D. C. Codee, R. E. J. N.
´
e, R. E. J. N. Litjens, L. J. van den Bos,
1
the quasi-stable bicyclic C4-sulfonium ion intermediate is in
´
equilibrium with the more reactive and b-selective mannosyl
3H4-oxocarbenium, which places all ring-substituents in an
electronically favorable position.
Litjens, R. den Heeten, H. S. Overkleeft, J. H. van Boom and
G. A. van der Marel, Org. Lett., 2003, 5, 1519–1522.
20 (a) Isomerisation of the b-product into the a-product does not occur
under these conditions, excluding this as a pathway leading to the
a-product; (b) While the formation of 25 from 8 was instanteneous,
the condensation reactions required overnight, excluding direct
intermolecular substitution of the activated imidates. See ESIw.
21 (a) A. Molinaro, A. Silipo, R. Lanzetta, M.-A. Newman, J. Maxwell
Dow and M. Parrilli, Carbohydr. Res., 2003, 338, 277–281; (b) S.
Notes and references
1 Handbook of Chemical Glycosylation-Advances in Stereoselectivity
and Therapeutic Relevance, ed. A. V. Demchenko, Wiley-VCH,
Weinheim, 2008.
Senchenkova, A. S. Shashkov, M. L. Kecskes, B. C. Ahohuendo,
´
2 M. G. Beaver, S. B. Billings and K. A. Woerpel, Eur. J. Org.
Chem., 2007, 771–781.
3 (a) K. C. Nicolaou, R. M. Rodrıgez, H. J. Mitchell and F. L. van
´
Delft, Angew. Chem., Int. Ed., 1998, 37, 1874–1876; (b) W. R. Roush,
D. P. Sebesta and R. A. James, Tetrahedron, 1997, 53, 8837–8852;
(c) H. M. Zuurmond, P. A. M. van de Klein, G. A. van der Marel
Y. A. Knirel and K. Rudolph, Carbohydr. Res., 2000, 329, 831–838.
22 (a) A. M. Alvarez, in Mechanisms of Resistance to Plant Diseases, ed.
A. Slusarenko, R. S. S. Fraser and L. C. van Loon, Kluwer Academic
Publishers, Dordrecht, 2000, pp. 21–52; (b) P. H. Williams, Plant
Disease, 1980, 64, 736–742.
c
2688 Chem. Commun., 2012, 48, 2686–2688
This journal is The Royal Society of Chemistry 2012