5
3. References
Reagrding mechanistic aspect of reaction, we believe that the
present 1,2,3-triazole ligand accelerated CuAAC might have
catalysed by the five membered copper complex formed by
mixed bidented ligand L2 with insitu formed Cu(I). How the
present ligand accelerates the reaction has been illustrated by the
plausible mechanism as outlined in scheme-4.The copper (II) is
initially reduced to Cu (I) by Na-ascorbate. The copper (I)
complex of the type Cu (I) L2 formed insitu by coordinating of
bidented N, O-1, 2, 3,-triazole ligand might be acting as a true
catalyst. The copper (I) complex first coordinate to the terminal
alkyne π electron to form the π-complex 1 and then copper
acetylide 2. The ligation of azide to 2 at the expense of 1, 2, 3-
triazole ligand results into azido complex 3 which then rearranges
to the cyclic six membered metallocycle 4 and further into copper
metalated triazole 5. Finally the copper metalated triazole
releases the 1, 2, 3-triazole 6 by protonation and the copper
catalyst is regenerated and reused again. However, the possibility
of involvement of multinuclear copper complex5d in the
cycloaddition reaction cannot be ruled out at this stage.
1. Huisgen, R. 1, 3-Dipolar Cycloaddition Chemistry, ed. Padwa,
A. Wiley NewYork, 1984, pp.1-176.
2. Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B.
Angew. Chem. Int. Ed., 2002, 41, 2596.
3. Throne, C. W.; Meldal, C. M. J. Org. Chem. 2002, 67, 3057.
4. a) Kolb, H. C.; Sharpless, K. B. Drug Discovery Today, 2003, 8,
1128; b) Breinbauer, R.; Kohn, M. Chem. Bio. Chem, 2003, 4,
1174; c) Xi, W.; Scott, T. F.; Kloxin, C. J.; Bowman, C. N. Adv.
Funct. Mater., 2014, 24, 2572; d) Wu, P.; Malkoch, M.; Hunt, J.
N.; Vestberg, R.; Kaltgrad, E.; Finn, M. G.; Fokin, V. V.;
Sharpless, K. B.; Hawker, C. J. Chem. Commun., 2005, 5775; e)
Lundberg, P.; Hawker, C. J.; Hult, A.; Malkoch, M. Polym. Sci.
Part A: Polym., 2008, 29, 998; f) Kushwaha, D.; Tiwari, V. K. J.
Org. Chem., 2013, 78, 8184; g) Antoni, P.; Malkoch, M;
Vamvounis, G.; Nystrom, D.; Nystrom, A.; Lindgren, M.; Hult, A.
J. Mater. Chem., 2008, 18, 2545-2554. h) Sharpless, K. B.;
Manetsch, R. Expert Opin. Drug Discovery, 2006, 1, 525; i)
Moses, J. E.; Moorhouse, A. D. Chem. Soc. Rev., 2007, 36, 1249.
5. a) Hein, E. J.; Fokin, V. V. Chem. Soc. Rev. 2010, 39, 1302; b)
Meldal, M.; Throne, C. W. Chem. Soc. Rev., 2008, 108, 2952; c)
Berg, R.; Straub, F. Beilstein J. Org. Chem., 2013, 9, 2715; d) Jin,
L; Tolentino, D. R.; Melaimi, M.; Bertrand, G. Science Advances,
2015, 1; e) Makerem, A.; Berg, R; Romingeer, F.; Straub. B.
Angew. Chem. Int. Ed.,2015, 54, 7431-7435; f) Presolski, S.I.;
Hong, V.; Cho, S. –H.; Finn, M. G. J. Am. Chem. Soc., 2010, 132,
14570-14576
The scope of alkynes and azides (table-4 and 5) of the present
reaction is much broader. Several alkynes and azides investigated
here have no literature precedent and thus many new 1, 2; 3-
triazoles could be entered in the list of “click” products using this
protocol. The very low catalyst/ligand loading, mild condition
and quick formation of triazoles with to near quantitative yields
are some of the noteworthy feature of the method.
6. a) Chan, T. R.; Hilgraf, R.; Sharpless, K. B.; Fokin, V. V. Org.
Lett., 2004, 6, 2853; b) Lewis, W. G.; Magallon, F. G.; Fokin, V.
V.; Finn, M. G. J. Am. Chem., 2004, 126, 9152.
7. Wang, F.; Fu, H.; Jiang, Y. Y.; Zhao, Y. F. Green Chem., 2008,
10, 452.
R
8. Tanaka, K.; Kageyama, C.; Fukase, K. Tetrahedron Lett. 2007,
48, 6475.
9. Rodionov, V. O.; Presolski, S. I.; Gardinier, S.; Lim, Y. –H.; Finn,
N
Ln Cu(I)
N
1/2 H2
N
PMO
O
R
M. G. J. Am. Chem. Soc., 2007, 129, 12696.
1
10. Donnelloy, P. S.; Zanatta, S. D.; Zammit, S. C.; White, J. M.;
Williams, S. J. Chem. Commun., 2008, 2459.
11. Meng, J. –C.; Fokin, V. V.; Finn, M. G. Tetrahedron Lett, 2005,
46, 4543.
N
N
Cu(I)
N
PMO
N
N
N
N
PMO
O
O
2
+
R1
N
N
H
R
12. Perez-Balderas, F.; Ortega-Munoz, M.; Morales-Sanfrutos, J.;
Hemandez-Mateo, F.; Calvo-Flores, F. G.; Calvo-Asin, J. A.; Isac-
Garcia, J.; Santoya-Gonzalez, F. Org. Lett., 2003, 5, 1951.
13. Steven, L.; Jayne, M.; Andrew, J. P. W.; Silvia D. –G.
Organometallics, 2011, 30, 6225-6232.
R1
N
N
N
6
H+
PMO
N
O
N
O
N
N
R
PBM
N
R1
3
R
N
R
N
N
N
14. Silvia, D. –G.; Correa, A.; Cavallo, L.; Nolan, S. P. Chem. –Eur.
5
N
N
N
N
J., 2006, 12, 7559.
R1
O
N
R1
N
15. Candelon, N.; Lastecourese, D.; Diallo, A. K.; Aranzaes, J. R.;
Astruc, D.; Vincent, J. –M. Chem. Commun., 2008, 741.
16. Campbell-Verduyn, L. S.; Mirfeizi, L.; Dierckx, R. A.; Elsinga, P.
H.; Feringa, B. L. Chem. Commun., 2009, 2139.
N
N
N
4
OMP
PMO = p-methoxybenzyl
17. a) Suijkerbuijk, B. M. J. M.; Aerts, B. N. H.; Dijkstra, H. P.; Lutz,
M.; Spek, A. L.; Koten, G.; Gebbink, R. J. M. K. Dalton Trans.,
2007, 1273-1276; b) Hübner, E.; Fischer, N. V.; Heinemann, F.
W.; Mitra, U.; Dremov, V.; Müller, P.; Burzlaff, N. Eur. J. Inorg.
Chem., 2010, 2010, 4100-4109.
Scheme 4.
2. Conclusion
18. Daniel, M. -E.; Guillermo, E. N. -S.; Deyanira, A. -B.; Alejandro,
A. –H.; Oscar, R. S. -C.; Rosa, S. Dalton Transactions, 2014, 43,
7069-7077.
In conclusion, we have demonstrated that the cheap, readily
accessible and highly efficient “click” ligand dramatically
accelerate the copper catalysed [3+2] cycloaddition of azide and
alkyne with high to excellent yields. Thus the mild, simple,
efficient and economical protocol for rapid triazoles synthesis
developed here would attract the attention of chemical
community.
19. Sharghi, H.; Shiri, P. Synthesis, 2015, 47, 1131-1146
20. a) Ibai, E. V.; Elena, H.; Thomas, L. M. Journal of Labelled
Compounds and Radiopharmaceuticals, 2014, 57, 275-278; b)
Das, T.; Banerjee, S.; Samuel, G.; Sarma, H.D.; Korde, A.;
Venkatesh, M.; Pillai, M.R.A. Nucl. Med. Biol. 2003, 30, 127–
134.; c) Mallia, M.B.; Mathur, A.; Subramanian, S.; Banerjee, S.;
Sarma, H.D.; Venkatesh, M. Bioorg. Med. Chem. Lett. 2005, 15,
3398–3401.
21. To a 10 mL vial charged with copper sulfate (0.5 mg, 0.01 mmol)
and sodium ascorbate (2 mg, 0.05 mmol) was added 0.5 mL of
DMSO-H2O mixture (1:3) and resulting mixture was stirred at
room temperature for 10 min. Then the appropriate azide (0.2
mmol) and alkyne (0.4 mmol, 2.0 equiv.) was added to it and the
reaction mixture was stirred vigorously at room temperature for
4h. After completion of reaction (TLC), the reaction mixture was
quenched with water (10 mL) and extracted with ethyl acetate
(3x10 mL) and combined organic extract was further washed with
water and brine. Evaporation of organic extract after drying over
Acknowledgements
RHT thanks department of Science and Technology (DST)
Ministry of Science, India for financial support of this project
(SR/FT/CS-85/2011), GVB and TGK thank UGC India, for Rajiv
Gandhi National Fellowships.