2166
G. Gao et al. / Tetrahedron Letters 53 (2012) 2164–2166
Brigaud, T.; Lefebvre, O.; Plantier-Royon, R.; Portella, C. Chem. Eur. J. 2001, 7,
H
903; d) Chanteau, F.; Plantier-Royon, R.; Portella, C. Synlett 2004, 512; e)
Wegert, A.; Behr, J. B.; Hoffmann, N.; Miethchen, R.; Portella, C.; Plantier-Ryon,
R. Synthesis 2006, 2343; f) Nicewicz, D. A.; Satterfirld, A. D.; Schmit, D. C.;
Johnson, J. S. J. Am. Chem. Soc. 2008, 130, 17281; g) Behenna, D. C.; Corey, E. J. J.
Am. Chem. Soc. 2008, 130, 6720; h) Lettan, R. B., II; Woodward, C. C.; Scheidt, K.
A. Angew. Chem., Int. Ed. 2008, 47, 2294.
O
M
Si
R
R
R
M = Zn, Ti, Mg
3. a) Allred, A. L.; Rochow, E. G. J. Inorg. Nucl. Chem. 1958, 5, 264; b) Brook, M. A.
Silicon in Organic, Organometallic, and Polymer Chemistry; Wiley-Interscience:
New York, 1999; c) Chen, X. H.; Deng, Y.; Jiang, K.; Lai, G. Q.; Ni, Y.; Yang, K. F.;
Jiang, J. X.; Xu, L. W. Eur. J. Org. Chem. 2011, 1736; d) Xu, L. W. Curr. Org. Chem.
2011, 15, 2742; (e) Xu, L. W.; Li, L.; Lai, G. Q.; Jiang, J. X. Chem. Soc. Rev. 2011, 40,
1777. and references cited therein.
Figure 1. Proposed transition state in the reduction.
amount of YCl3, Ni(OAc)2, or Al(OiPr)3, the corresponding a-hydrox-
ysilane 2a was obtained in excellent isolated yields (entries 1, 5,
and 9). In the treatment of acylsilane 1a with Et2Zn in the presence
of YbCl3 and RhCl3, poor yields were observed. From these studies, it
was clear that some Lewis acids showed effective catalytic activity
in the hydride transfer reduction of acylsilane with diethylzinc.
Encouraged by these results, we examined the enantioselective
reduction of acylsilane (1a) was used as model substrate and cin-
chona alkaloids as chiral ligands. However, only Ni(OAc)2 gave only
6% ee10 in the presence of cinchonine (110 mol %).
Although the mechanism of the reduction with Et2Zn is unclear
at present, it could be interpreted probably as being the result of a
H-transfer process via a six-membered transition state (Fig. 1).7a
The current model for the reduction of acylsilane involves the coor-
dination of the carbonyl moiety in the molecule to metal center/
zinc and subsequent b-hydride shift and extrusion of ethylene.
In conclusion, we report here the first example of the reduction
4. Selected recent examples: (a) Sardina, F. J.; Rapoport, H. Chem. Rev. 1825, 1996,
96; (b) Takeda, K.; Tanaka, T. Synlett 1999, 705; (c) Obora, Y.; Ogawa, Y.; Imai,
Y.; Kawamura, T.; Tsuji, Y. J. Am. Chem. Soc. 2001, 123, 10489; (d) Linhu, X.;
Johnson, J. S. Angew. Chem., Int. Ed. 2003, 42, 2534; (e) Linhu, X.; Potnick, J. R.;
Johnson, J. S. J. Am. Chem. Soc. 2004, 126, 3070; (f) Schaumann, E.; Kirschning, A.
Synlett 2007, 177; (g) Shen, Z.; Dong, V. M. Angew. Chem., Int. Ed. 2009, 48, 784;
(h) Li, F. Q.; Zhong, S.; Lu, G.; Chan, A. S. C. Adv. Synth. Catal. 1955, 2009, 351; (i)
Lettan, R. B., II; Galliford, C. V.; Woodward, C. C.; Scheidt, K. A. J. Am. Chem. Soc.
2009, 131, 8805; (j) Yue, Y.; Yamamoto, H.; Yamane, M. Synlett 2009, 2831; (k)
Steward, K. M.; Johnson, J. S. Org. Lett. 2010, 12, 2864; (l) Song, Z.; Kui, L.; Sun,
X.; Li, L. Org. Lett. 2011, 13, 1440; (m) Liu, B.; Lu, C. D. J. Org. Chem. 2011, 76,
4205.
5. a) Gao, G.; Gu, F. L.; Jiang, J. X.; Jiang, K.; Sheng, C. Q.; Lai, G. Q.; Xu, L. W. Chem.
Eur. J. 2011, 17, 2698; b) Gao, G.; Bai, X. F.; Yang, H. M.; Jiang, J. X.; Lai, G. Q.; Xu,
L. W. Eur. J. Org. Chem. 2011, 5039.
6. Selected examples of reduction of acylsilanes: (a) Biernbaum, M. S.; Mosher, H.
S. J. Org. Chem. 1971, 36, 3168; (b) Soderquist, J. A.; Anderson, C. L.; Miranda, E.
L.; Rivera, I.; Kabalka, G. W. Tetrahedron Lett. 1990, 31, 4677; (c) Linderman, R.
J.; Ghannam, A.; Badej, I. J. Org. Chem. 1991, 56, 5213; (d) Buynak, J. D.;
Strickland, J. B.; Lamb, G. W.; Khasnis, D.; Modi, S.; Williams, D.; Zhang, H. J.
Org. Chem. 1991, 56, 7076; (e) Cirillo, P. F.; Panek, J. S. Org. Prep. Proced. Int.
1992, 24, 553; (f) Cirillo, P. F.; Panek, J. S. J. Org. Chem. 1994, 59, 3055; (g)
of acylsilanes to
a-hydroxysilanes, in which diethylzinc was used
as a reducing agent in the presence of Ti(OiPr)4 or other Lewis
acids. The reduction typically proceeds in good yields. Further re-
search on the asymmetric reduction with organozinc compounds
is currently under way in our laboratory.
Sakaguchi,
; Mano, H.; Ohfune, Y. Tetrahedron Lett. 1998, 39, 4311; (h)
Patrocínio, A. F.; Corrêa; Mortan, P. J. S. J. Chem. Soc., Perkin Trans. 1 1999,
3133; (i) Huckins, J. R.; Rychnovsky, S. D. J. Org. Chem. 2003, 68, 10135; (j) Lou,
W. Y.; Zong, M. H.; Zhang, Y. Y.; Wu, H. Enzyme Microbial Technol. 2004, 35, 190;
(k) Arai, N.; Suzuki, K.; Sugizaki, S.; Sorimachi, H.; Ohkuma, T. Angew. Chem., Int.
Ed. 2008, 47, 1770; (l) Matsuo, J.-i.; Hattori, Y.; Ishibashi, H. Org. Lett. 2010, 12,
2294; (m) Matsuo, J.-i.; Hattori, Y.; Hashizume, M.; Ishibashi, H. Tetrahedron
2010, 66, 6062.
Acknowledgments
7. a) Giacomelli, G.; Lardicci, L.; Santi, R. J. Org. Chem. 1974, 39, 2736; b) Takeda,
K.; Takeda, M.; Nakajima, A.; Yoshii, E. J. Am. Chem. Soc. 1995, 117, 6400; (c)
Takeda, K.; Nakajima, A.; Takeda, M.; Okamoto, Y.; Sato, Y.; Yoshii, E.; Koizumi;
Shiro, M. J. Am. Chem. Soc. 1998, 120, 4947; d) Takeda, K.; Ohnishi, Y.; Koizumi,
T. Org. Lett. 1999, 1, 237; (e) García; LaRochelle, L. K.; Walsh, P. J. J. Am. Chem.
Soc. 2002, 124, 10970; (f) Sasaki, M.; Kondo, Y.; Kawahata, M.; Yamaguchi, K.;
Takeda, K. Angew. Chem., Int. Ed. 2011, 50, 6375.
Financial support by the National Natural Science Founder of
China (No. 20973051 and 21173064), Program for Excellent Young
Teachers in Hangzhou Normal University (HNUEYT), and Zhejiang
Provincial Natural Science Foundation of China (Y4090139) is
appreciated.
8. General procedure for reduction of acylsilane 1a to a-hydroxysilane 2a: Under
dry nitrogen atmosphere, Ti(OiPr)4 (1.0 mmol) and 2.0 mmol of Et2Zn (1.0 M
solution in hexane) were mixed in 4 mL of Et2O at room temperature. After
10 min, acylsilane 1a (1.0 mmol) was added and then the reaction was carried
out at room temperature for 12 h. The reaction was quenched with 1 N HCl. The
aqueous phase was extracted with ethyl acetate, dried over Na2SO4, filtered,
and concentrated. The product was known (e.g., see: Ref. 6k) and purified by
chromatography (86% isolated yield was obtained).
Supplementary data
Supplementary data associated with this article can be found, in
9. 4.0 or 2.0 equiv of Et2Zn resulted in poor conversion.
10. Enantiomeric excess was determined by chiral HPLC analysis (Chiralcel OD-H
References and notes
column). When 1 equiv of cinchonine (CN) was chiral auxiliary, 6% ee of
a-
hydroxysilane 2a was obtained. And other cinchona alkaloids (CD, QN, QD)
resulted in poorer enantioselectivities. When N-(2-amino-1,2-diphenylethyl)-
4-methylbenzenesulfonamide (Ts-DPEN) was used as a ligand, only 4% ee was
observed in this reaction.
1. Reviews: (a) Ricci, A.; Degl’Innocenti, A. Synthesis 1986, 647; (b) Page, P. C. B.;
Klair, S. S.; Rosenthal, S. Chem. Soc. Rev. 1990, 19, 147.
2. a) Corey, E. J.; Luo, G.; Lin, L. S. Angew. Chem., Int. Ed. 1998, 37, 1126; b) Saleur,
D.; Brigaud, T.; Bouillon, J. P.; Portella, C. Synlett 1999, 705; c) Berber, H.;