10.1002/ejoc.201801883
European Journal of Organic Chemistry
COMMUNICATION
Liu, Q. Hou, D. Bao, J. T. Starr, J. Chen, M. Yan and P. S. Baran,
Angew. Chem. Int. Ed., 2017, 56, 13088–13093.
Conclusions
[9]
a) O. Baslé and C.-J. Li, Chem. Commun., 2009, 0, 4124–4126. b) Z. Li
and C.-J. Li, J. Am. Chem. Soc., 2005, 127, 6968–6969. c) Z. Li, D. S.
Bohle and C.-J. Li, Proc. Natl. Acad. Sci. USA, 2006, 103, 8928–8933.
d) N. Fu, L. Li, Q. Yi and S. Luo, Org. Lett. 2017, 19, 2122−2125.
In summary, we have successfully developed an
electrochemical CDC reaction of N-aryl-tetrahydroisoquinolines
with phosphites and indole using an undivided cell. This reaction
could be accomplished without the use of any oxidants, catalysts
or additives at room temperature. This protocol offers an
alternative to conventional methods that require chemical
oxidants or metal catalysts and represents an environmentally
friendly tool for oxidative C–P and C–C bonds formation.
[10] a) C.-J. Li and Z. Li, Pure Appl. Chem., 2006, 78, 935−945. b) C.-J. Li,
Acc. Chem. Res., 2009, 42, 335−344. c) S. A. Girard, T. Knauber and
C.-J. Li, Angew. Chem. Int. Ed., 2014, 53, 74–100.
[11] a) K. W. Bentley, Nat. Prod. Rep., 2006, 23, 444–463. b) K. R. Campos,
Chem. Soc. Rev., 2007, 36, 1069–1084. c) K. M. Jones and M.
Klussmann, Synlett, 2012, 23, 159–162.
[12] Y. Liu, C. Wang, D. Xue, M. Xiao, C. Li and J. Xiao, Chem. Eur. J.,
2017, 23, 3051–3061.
Experimental Section
[13] K. Alagiri, P. Devadig and K. R. Prabhu, Tetrahedron Lett., 2012, 53,
1456–1459.
A 10 mL distillation flask equipped with a magnetic stir bar was charged
with phosphite 2 or indole 4 (0.3 mmol), CH2Cl2 (5.0 mL), compound 1
(0.25 mmol) and n-Bu4NBr (0.5 mmol). The resulting suspension was
stirred until complete dissolution was achieved. The flask equipped with
graphite rod anode (d = 5 mm) and Pt plate cathode (0.5 cm × 0.5 cm).
The reaction solution was stirred and electrolyzed at a constant current of
5 mA for corresponding time under room temperature. When the reaction
was finished, the reaction mixture was diluted with CH2Cl2. The resulting
solution was washed with water and brine, dried over Na2SO4, and
concentrated in vacuo. Purification by flash column chromatography
(ethyl acetate/petroleum ether = 5:1 or 20:1, v/v) afforded the desired
product 3 or 5.
[14] a) J. Xie, H. Li, Q. Xue, Y. Cheng and C. Zhu, Adv. Synth. Catal., 2012,
354, 1646–1650. b) Q. Xue, J. Xie, H. Jin, Y. Cheng and C, Zhu, Org.
Biomol. Chem., 2013, 11, 1606–1609. c) H. E. Ho, Y. Ishikawa, N.
Asao, Y. Yamamoto and T. Jin, Chem. Commun., 2015, 51, 12764–
12767.
[15] a) P. Liu, C.-Y. Zhou, S. Xiang and C.-M. Che, Chem. Commun., 2010,
46, 2739–2741. b) K. Alagiri, G. S. R. Kumara and K. R. Prabhu, Chem.
Commun., 2011, 47, 11787–11789. c) A. Tanoue, W.-J. Yoo and S.
Kobayashia, Adv. Synth. Catal., 2013, 355, 269–273. d) M. O. Ratnikov,
X. Xu and M. P. Doyle, J. Am. Chem. Soc., 2013, 135, 9475−9479. e)
C.-J. Wu, J.-J. Zhong, Q.-Y. Meng, T. Lei, X.-W. Gao, C.-H. Tung and
L.-Z. Wu, Org. Lett., 2015, 17, 884−887.
[16] a) H. Wang, X. Li, F. Wu and B. Wan, Tetrahedron Lett., 2012, 53,
681–683. b) W. Su, J. Yu, Z. Li and Z. Jiang, J. Org. Chem., 2011, 76,
9144−9150.
Acknowledgments
[17] a) Q. Wang and Z. Xu, Chin. J. Org. Chem., 2013, 33, 2430–2434. b) K.
Gu, Z. Zhang, Z. Bao, H. Xing, Q. Yang and Q. Ren, Eur. J. Org. Chem.,
2016, 2016, 3939–3942. c) M. Ghobrial, K. Harhammer, M. D.
Mihovilovic and M. Schnürch, Chem. Commun., 2010, 46, 8836–8838.
[18] T. Suga, S. Iizuka and T. Akiyama, Org. Chem. Front., 2016, 3, 1259–
1264.
This work was supported by the Sci-Tech Development Project
of Jilin Province in China (Nos. 20160520039JH and
20170101095JC), the Foundation of Jilin Educational Committee
(No. JJKH20180244KJ), and the Norman Bethune Program of
Jilin University (No. 2015330). Additional support was provided
by Changchun Discovery Sciences, Ltd.
[19] a) K. Alagiri, P. Devadig and K. R. Prabhu, Chem. Eur. J., 2012, 18,
5160–5164. b) J. Dhineshkumar, M. Lamani, K. Alagiri and K. R.
Prabhu, Org. Lett., 2013, 15, 1092–1095. c) C. Huo, C. Wang, M. Wu,
X. Jia, X. Wang, Y. Yuan and H. Xie, Org. Biomol. Chem., 2014, 12,
3123–3128. d) C. Huo, H. Xie, M. Wu, X. Jia, X. Wang, F. Chen and J.
Tang, Chem. Eur. J., 2015, 21, 5723–5726. e) J. F. Franz, W. B. Kraus
and K. Zeitler, Chem. Commun., 2015, 51, 8280–8283. f) A. Tanoue,
W.-J. Yoo and S. Kobayashi, Org. Lett., 2014, 16, 2346−2349.
[20] a) M. Rueping, S. Zhu and R. M. Koenigs, Chem. Commun., 2011, 47,
8679–8681. b) W.-J. Yoo and S. Kobayashi, Green Chem., 2014, 16,
2438–2442.
Keywords: Electrochemistry • Cross-dehydrogenative coupling
reaction • Tetrahydroisoquinoline • Phosphite • Indole
[1]
[2]
C. J. Chang, ACS Cent. Sci., 2016, 2, 266−267.
a) S. R. Waldvogel and M. Selt, Angew. Chem. Int. Ed., 2016, 55,
12578–12580. b) S. K. Ritter, C&EN, 2017, 95, 23–25.
[3]
a) R. Francke and R. D. Little, Chem. Soc. Rev., 2014, 43, 2492–2521.
b) E. J. Horn, B. R. Rosen and P. S. Baran, ACS Cent. Sci., 2016, 2,
302−308. c) M. Yan, Y. Kawamata and P. S. Baran, Chem. Rev., 2017,
117, 13230–13319. d) Y. Jiang, K. Xu and C. Zeng, Chem. Rev., 2018,
118, 4485–4540. e) J.-i. Yoshida, A. Shimizu, R. Hayashi, Chem. Rev.,
2018, 118, 4702−4730.
[21] D. B. Freeman, L. Furst, A. G. Condie and C. R. J. Stephenson, Org.
Lett., 2012, 14, 94–97.
[22] a) D. P. Hari and B. Köenig, Org. Lett., 2011, 13, 3852–3855. b) Q.-Y.
Meng, J.-J. Zhong, Q. Liu, X.-W. Gao, H.-H. Zhang, T. Lei, Z.-J. Li, K.
Feng, B. Chen, C.-H. Tung and L.-Z. Wu, J. Am. Chem. Soc., 2013,
135, 19052−19055. c) J.-J. Zhong, C.-J. Wu, Q.-Y. Meng, X.-W. Gao, T.
Lei, C.-H. Tung and L.-Z. Wu, Adv. Synth. Catal., 2014, 356, 2846–
2852.
[4]
a) J. Yoshida, K. Kataoka, R. Horcajada and A. Nagaki, Chem. Rev.,
2008, 108, 2265–2299. b) R.Hayashi, A. Shimizu and J. Yoshida, J. Am.
Chem. Soc., 2016, 138, 8400–8403.
[23] a) M. Rueping, J. Zoller, D. C. Fabry, K. Poscharny, R. M. Koenigs, T.
E. Weirich and J. Mayer, Chem. Eur. J., 2012, 18, 3478–3481. b) M.
Rueping, C. Vila and T. Bootwicha, ACS Catal. 2013, 3, 1676−1680. c)
W.-P. To, Y. Liu, T.-C. Lau and C.-M. Che, Chem. Eur. J., 2013, 19,
5654–5664. d) M. N. Gandy, C. L. Raston and K. A. Stubbs, Chem.
Commun., 2015, 51, 11041−11044. e) X.-Z. Wang, Q.-Y. Meng, J.-J.
Zhong, X.-W. Gao, T. Lei, L.-M. Zhao, Z.-J. Li, B. Chen, C.-H. Tung and
L.-Z. Wu, Chem. Commun., 2015, 51, 11256−11259. f) J.-J. Zhong, Q.-
Y. Meng, G.-X. Wang, Q. Liu, B. Chen, K. Feng, C.-H. Tung and L.-Z.
Wu, Chem. Eur. J., 2013, 19, 6443–6450. g) X.-S. Ke, Y. Ning, J. Tang,
[5]
[6]
[7]
B. R. Rosen, E. W. Werner, A. G. O’Brien and P. S. Baran, J. Am.
Chem. Soc., 2014, 136, 5571−5574.
E. J. Horn, B. R. Rosen, Y. Chen, J. Tang, K. Chen, M. D. Eastgate and
P. S. Baran, Nature, 2016, 533, 77–81.
a) Z.-J. Wu and H.-C. Xu, Angew. Chem. Int. Ed., 2017, 56, 4734 –
4738. b) Y. Gao, Y. Wang, J. Zhou, H. Mei and J. Han, Green Chem.,
2018, 20, 583−587.
[8]
a) S. R. Waldvogel and S. Möhle, Angew. Chem. Int. Ed., 2015, 54,
6398–6399. b) C. Li, Y. Kawamata, H. Nakamura, J.C. Vantourout, Z.
This article is protected by copyright. All rights reserved.