Journal of Medicinal Chemistry
Article
(15) Liu, Z.; Hamamichi, S.; Lee, B. D.; Yang, D.; Ray, A.; Caldwell,
G. A.; Caldwell, K. A.; Dawson, T. M.; Smith, W. W.; Dawson, V. L.
Inhibitors of LRRK2 kinase attenuate neurodegeneration and
Parkinson-like phenotypes in Caenorhabditis elegans and Drosophila
Parkinson’s disease models. Hum. Mol. Genet. 2011, 20, 3933−3942.
(16) Lee, B. D.; Shin, J.-H.; VanKampen, J.; Petrucelli, L.; West, A.
B.; Ko, H. S.; Lee, Y.-I.; Maguire-Zeiss, K. A.; Bowers, W. J.; Federoff,
H. J.; Dawson, V. L.; Dawson, T. M. Inhibitors of leucine-rich repeat
kinase-2 protect against models of Parkinson’s disease. Nat. Med. 2010,
16, 998−1000.
molecular pair; LE, ligand efficiency; KD, kinase domain;
SBDD, structure-based drug design
REFERENCES
■
(1) Lees, A. J.; Hardy, J.; Revesz, T. Parkinson’s disease. Lancet 2009,
373, 2055−2066. Erratum in Lancet 2009, 374, 684.
(2) Zimprich, A.; Biskup, S.; Leitner, P.; Lichtner, P.; Farrer, M.;
Lincoln, S.; Kachergus, J.; Hulihan, M.; Uitti, R. J.; Calne, D. B.;
Stoessl, A. J.; Pfeiffer, R. F.; Patenge, N.; Carbajal, I. C.; Vieregge, P.;
Asmus, F.; Muller-Myhsok, B.; Dickson, D. W.; Meitinger, T.; Strom,
T. M.; Wszolek, Z. K.; Gasser, T. Mutations in LRRK2 cause
autosomal-dominant parkinsonism with pleomorphic pathology.
Neuron 2004, 44, 601−607.
(3) Paisan-Ruiz, C.; Jain, S.; Evans, E. W.; Gilks, W. P.; Simon, J.; van
der Brug, M.; Lopez de Munain, A.; Aparicio, S.; Gil, A. M.; Khan, N.;
Johnson, J.; Martinez, J. R.; Nicholl, D.; Carrera, I. M.; Pena, A. S.; de
Silva, R.; Lees, A.; Marti-Masso, J. F.; Perez-Tur, J.; Wood, N. W.;
Singleton, A. B. Cloning of the gene containing mutations that cause
PARK8-linked Parkinson’s disease. Neuron 2004, 44, 595−600.
(4) Dachsel, J. C.; Farrer, M. J. LRRK2 and Parkinson disease. Arch.
Neurol. 2010, 67, 542−547.
(17) Garcia-Serna, R.; Mestres, J. Chemical Probes for biological
systems. Drug Discovery Today 2011, 16, 99−106.
(18) Deng, X.; Dzamko, N.; Prescott, A.; Davies, P.; Liu, Q.; Yang,
Q.; Lee, J.-D.; Patricelli, M. P.; Nomanbhoy, T. K.; Alessi, D. R.; Gray,
N. S. Characterization of a selective inhibitor of the Parkinson’s disease
kinase LRRK2. Nat. Chem. Biol. 2011, 7, 203−205.
(19) Ramsden, N.; Perrin, J.; Ren., Z.; Lee, B. D.; Zinn, N.; Dawson,
V. L.; Tam, D.; Bova, M.; Lang, M.; Drewes, G.; Bantscheff, M.; Bard,
F.; Dawson, T. M.; Hopf, C. Chemoproteomics-based design of potent
LRRK2-selective lead compounds that attenuate Parkinson’s disease-
related toxicity in human neurons. ACS Chem. Biol. 2011, 6, 1021−
1028.
(5) Satake, W.; Nakabayashi, Y.; Mizuta, I.; Hirota, Y.; Ito, C.; Kubo,
M.; Kawaguchi, T.; Tsunoda, T.; Watanabe, M.; Takeda, A.;
Tomiyama, H.; Nakashima, K.; Hasegawa, K.; Obata, F.; Yoshikawa,
T.; Kawakami, H.; Sakoda, S.; Yamamoto, M.; Hattori, N.; Murata, M.;
Nakamura, Y.; Toda, T. Genome-wide association study identifies
common variants at four loci as genetic risk factors for Parkinson’s
disease. Nat. Genet. 2009, 41, 1303−1307.
(20) Zhang, J.; Deng, X.; Choi, H. G.; Alessi, D. R.; Gray, N. S.
Characterization of TAE684 as a potent LRRK2 kinase inhibitor.
Bioorg. Med. Chem. Lett. 2012, 22, 1864−1869.
(21) Kramer, T.; Lo Monte, F.; Goering, S.; Okala Amombo, G. M.;
Schmidt, B. Small molecule kinase inhibitors for LRRK2 and their
application to parkinson’s disease models. ACS Chem. Neurosci. 2012,
3, 151−160.
(22) Lovitt, B; Vanderporten, E. C.; Sheng, Z.; Zhu, H.; Drummond,
J.; Liu, Y. Differential effects of divalent manganese and magnesium on
the kinase activity of leucine-rich repeat kinase 2 (LRRK2).
Biochemistry 2010, 49, 3092−3100.
(23) Wager, T. T.; Hou, X.; Verhoest, P. R.; Villalobos, A. Moving
beyond rules: the development of a central nervous system
multiparameter optimization (CNS MPO) approach to enable
alignment of druglike properties. ACS Chem. Neurosci. 2010, 1,
435−449.
(24) Hopkins, A. L.; Groom, C. R.; Alex, A. Ligand efficiency: a
useful metric for lead selection. Drug Discovery Today 2004, 9, 430−
431.
(25) Leeson, P. D.; Springthorpe, B. The influence of drug-like
concepts on decision-making in medicinal chemistry. Nat. Rev. Drug
Discovery 2007, 6, 881−890.
(26) Moore, W. J.; Richard, D.; Thorarensen, A. An analysis of the
diaminopyrimidine patent estates describing spleen tyrosine kinase
inhibitors by Rigel and Portola. Expert Opin. Ther. Pat. 2010, 20,
1703−1722.
(27) Deng, J.; Lewis, P. A.; Greggio, E.; Sluch, E.; Beilina, A.;
Cookson, M. R. Structure of the ROC domain from the Parkinson’s
disease-associated leucine-rich repeat kinase 2 reveals a dimeric
GTPase. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 1499−1504.
(28) Marín, I. The Parkinson disease gene LRRK2: evolutionary and
structural insights. Mol. Biol. Evol. 2006, 23, 2423−2433.
(29) Nichols, R. J.; Dzamko, N.; Hutti, J. E.; Cantley, L. C.; Deak, M.;
Moran, J.; Bamborough, P.; Reith, A. D.; Alessi, D. R. Substrate
specificity and inhibitors of LRRK2, a protein kinase mutated in
Parkinson’s disease. Biochem. J. 2009, 424, 47−60.
(30) Liu, M.; Kang, S.; Ray, S.; Jackson, J.; Zaitsev, A. D.; Gerber, S.
A.; Cuny, G. D.; Glicksman, M. A. Kinetic, mechanistic, and structural
modeling studies of truncated wild-type leucine-rich repeat kinase 2
and the G2019S mutant. Biochemistry 2011, 50, 9399−9408.
(31) Cavasotto, C. N.; Phatak, S. S. Homology modeling in drug
discovery: current trends and applications. Drug Discovery Today 2009,
14, 676−683.
(32) Grant, M. A. Protein structure prediction in structure-based
ligand design and virtual screening. Comb. Chem. High Throughput
Screening 2009, 12, 940−960.
́ ́
(6) Simon-Sanchez, J.; Schulte, C.; Bras, J. M.; Sharma, M.; Gibbs, J.
R.; Berg, D.; Paisan-Ruiz, C.; Lichtner, P.; Scholz, S. W.; Hernandez,
D. G.; Kruger, R.; Federoff, M.; Klein, C.; Goate, A.; Perlmutter, J.;
̈
Bonin, M.; Nalls, M. A.; Illig, T.; Gieger, C.; Houlden, H.; Steffens, M.;
Okun, M. S.; Racette, B. A.; Cookson, M. R.; Foote, K. D.; Fernandez,
H. H.; Traynor, B. J.; Schreiber, S.; Arepalli, S.; Zonozi, R.; Gwinn, K.;
van der Brug, M.; Lopez, G.; Chanock, S. J.; Schatzkin, A.; Park, Y.;
Hollenbeck, A.; Gao, J.; Huang, X.; Wood, N. W.; Lorenz, D.; Deuschl,
G.; Chen, H.; Riess, O.; Hardy, J. A.; Singleton, A. B.; Gasser, T.
Genome-wide association study reveals genetic risk underlying
Parkinson’s disease. Nat. Genet. 2009, 41, 1308−1312.
(7) Mata, I. F.; Wedemeyer, W. J.; Farrer, M. J.; Taylor, J. P.; Gallo,
K. A. LRRK2 in Parkinson’s disease: protein domains and functional
insights. Trends Neurosci. 2006, 29, 286−293.
(8) Greggio, E.; Cookson, M. R. Leucine-rich repeat kinase 2
mutations and Parkinson’s disease: three questions. ASN Neuro 2009,
1 (e00002), 13−24.
(9) Gandhi, P. N.; Chen, S. G.; Wilson-Delfosse, A. L. Leucine-rich
repeat kinase 2 (LRRK2): a key player in the pathogenesis of
Parkinson’s disease. J. Neurosci. Res. 2009, 87, 1283−1295.
(10) Drolet, R. E.; Sanders, J. M.; Kern, J. T. Leucine-rich repeat
kinase 2 (LRRK2) cellular biology: a review of recent advances in
identifying physiological substrates and cellular functions. J. Neuro-
genet. 2011, 25, 140−151.
(11) West, A. B.; Moore, D. J.; Biskup, S.; Bugayenko, A.; Smith, W.
W.; Ross, C. A.; Dawson, V. L.; Dawson, T. M. Parkinson’s disease-
associated mutations in leucine-rich repeat kinase 2 augment kinase
activity. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 16842−16847.
(12) Greggio, E.; Jain, S.; Kingsbury, A.; Bandopadhyay, R.; Lewis, P.;
Kaganovich, A.; van der Brug, M. P.; Beilina, A.; Blackinton, J.;
Thomas, K. J.; Ahmad, R.; Miller, D. W.; Kesavapany, S.; Singleton, A.;
Lees, A.; Harvey, R. J.; Harvey, K.; Cookson, M. R. Kinase activity is
required for the toxic effects of mutant LRRK2/dardarin. Neurobiol.
Dis. 2006, 23, 329−341.
(13) Cookson, M. R. The role of leucine-rich repeat kinase 2
(LRRK2) in Parkinson’s disease. Nat. Rev. Neurosci. 2010, 11, 791−
797.
(14) Rudenko, I. N.; Chia, R.; Cookson, M. R. Is inhibition of kinase
activity the only therapeutic strategy for LRRK2-associated Parkinson’s
disease? BMC Med. 2012, 10, 20−27.
I
dx.doi.org/10.1021/jm300452p | J. Med. Chem. XXXX, XXX, XXX−XXX