Table 3 Enantioselective synthesis of the bridged azatricyclic system
S. no. Michael adduct 9 eea (%) Azatricyclic lactam 4b eea (%)
Notes and references
1 For reviews on aza-polycyclic systems, see: (a) R. A. Pilli,
G. B. Rosso and M. C. F. de Oliveira, Nat. Prod. Rep., 2010,
27, 1908; (b) J. Bonjoch, F. Diaba and B. Bradshaw, Synthesis,
2011, 993.
2 For a recent review on the Daphniphyllum alkaloids: J. Kobayashi
and T. Kubota, Nat. Prod. Rep., 2009, 26, 936.
3 For recent reviews on the Lycopodium alkaloids, see:
(a) Y. Hirasawa, J. Kobayashi and H. Morita, Heterocycles,
2009, 77, 679; (b) M. Kitajima and H. Takayama, Lycopodium
Alkaloids: Isolation and Asymmetric Synthesis, in Topics in Current
1
99
99
99
99
Chemistry, ed. H.-J. Knolker, Springer, Berlin, 2011.
¨
4 (a) H. Li, X. Wang and X. Lei, Angew. Chem., Int. Ed., 2012,
51, 491; (b) X. M. Zhang, Y. Q. Tu, F. M. Zhang, H. Shao and
X. Meng, Angew. Chem., Int. Ed., 2011, 50, 3916.
2
5 (a) A. S. Kende, T. L. Smalley, Jr. and H. Huang, J. Am. Chem.
Soc., 1999, 121, 7431; (b) M. H. Becker, P. Chua, R. Downham,
C. J. Douglas, N. K. Garg, S. Hiebert, S. Jaroch, R. T. Matsuoka,
J. A. Middleton, F. W. Ng and L. E. Overman, J. Am. Chem. Soc.,
2007, 129, 11987; (c) B. B. Liau and M. D. Shair, J. Am. Chem.
Soc., 2010, 132, 9594.
a
b
% ee calculated using chiral HPLC. HPLC analysis was done on
the corresponding thiolactam derivative.
6 For the total synthesis of FR901483, see: (a) B. B. Snider and
H. Lin, J. Am. Chem. Soc., 1999, 121, 7778; (b) G. Scheffler,
H. Seike and E. J. Sorensen, Angew. Chem., Int. Ed., 2000,
39, 4593; (c) M. Ousmer, N. A. Braun and M. A. Ciufolini, Org.
Lett., 2001, 3, 765; (d) J. H. Maeng and R. L. Funk, Org. Lett.,
2001, 3, 1125; (e) C. A. Carson and M. A. Kerr, Org. Lett., 2009,
11, 777.
7 Approaches to the core structure of FR901483, see:
(a) N. Yamazaki, H. Suzuki and C. Kibayashi, J. Org.
Chem., 1997, 62, 8280; (b) D. J. Wardrop and W. Zhang, Org.
Lett., 2001, 3, 2353; (c) J. E. Kropf, I. C. Meigh, M. W. P.
Bebbington and S. M. Weinreb, J. Org. Chem., 2006, 71, 2046;
(d) S. Kaden and H. U. Reissig, Org. Lett., 2006, 8, 4763;
(e) D. B. Gotchev and D. L. Comins, J. Org. Chem., 2006,
71, 9393; (f) S. T. M. Simila and S. F. Martin, J. Org. Chem.,
2007, 72, 5342.
8 For recent reports on the construction of the core structure of
Daphniphyllum alkaloids see: F. Sladojevich, I. N. Michaelides,
B. Darses, J. W. Ward and D. J. Dixon, Org. Lett., 2011, 13, 5132
and references cited therein.
Scheme 4 Plausible mechanism for the domino semipinacol–Schmidt
reaction of syn-oxaspiropentane-azide.
9 For the construction of linearly fused azatricyclic ring systems, see:
(a) R. A. Pilli and M. C. F. de Oliveira, Nat. Prod. Rep., 2000,
17, 117; (b) R. Alibes and M. Figueredo, Eur. J. Org. Chem., 2009,
´
2421; (c) Y. Wang, L. Zhu, Y. Zhang and R. Hong, Angew. Chem.,
Int. Ed., 2011, 50, 2787.
10 For the construction of angularly fused azatricyclic ring
Michael addition of dimethyl malonate with cyclohexenone
and cycloheptenone in the presence of Shibasaki (S)-ALB
catalyst16 furnished the corresponding adducts (À)-9a and
(À)-9c, respectively, in 99% ee. Following a similar sequence
of reactions as shown in Scheme 2, the Michael adducts were
further converted to the azatricyclic lactam (À)-4a and (À)-4c,
respectively, in good yields (Table 3). The azatricyclic lactam
(À)-4a is the enantiomer of the ABC core of FR901483.17
A plausible mechanism for the formation of a bridged
azatricyclic framework from syn-oxaspiropentane-azide 5
via domino semipinacol–Schmidt cyclization is depicted in
Scheme 4.
systems, see: (a) J. Aube and G. L. Milligan, J. Am. Chem.
´
Soc., 1991, 113, 8965; Y. M. Zhao, P. Gu, Y. Q. Tu, C. A.
Fan and Q. Zhang, Org. Lett., 2008, 10, 1763; (b) A. M.
Meyer, C. E. Katz, S. W. Li, D. V. Velde and J. Aube, Org. Lett.,
´
2010, 12, 1244; Z. H. Chen, Y. Q. Tu, S. Y. Zhang and
F. M. Zhang, Org. Lett., 2011, 13, 724; (c) A. C. Flick, M. J. A.
Cabellero, H. I. Lee and A. Padwa, J. Org. Chem., 2010, 75,
1992.
11 For intramolecular Schmidt reaction of azido-epoxides, see:
(a) P. G. Reddy, B. Varghese and S. Baskaran, Org. Lett., 2003,
5, 583; (b) P. G. Reddy and S. Baskaran, J. Org. Chem., 2004,
69, 3093; (c) P. G. Reddy, M. G. Sankar and S. Baskaran,
Tetrahedron Lett., 2005, 46, 4559.
12 S. Lang, A. R. Kennedy, J. A. Murphy and A. H. Payne, Org.
Lett., 2003, 5, 3655.
13 For domino reactions in organic synthesis, see: L. F. Tietze,
G. Brasche and K. Gericke, Domino Reactions in Organic Synthesis,
Wiley-VCH, Weinheim, 2006.
In summary, a novel and general approach for the stereo-
and enantioselective construction of bridged azatricyclic ring
systems having an azaquaternary center has been developed
based on a domino semipinacol–Schmidt reaction. This new
method has provided an elegant entry for the compact synthesis
of the ABC-core of the biologically significant alkaloids such as
FR901483 and daphlongeranine B. Since our approach is
simple and effective, it can be readily implemented in the stereo-
and enantioselective synthesis of natural products possessing
bridged aza-polycyclic frameworks.
14 B. M. Trost and M. J. Bogdanowicz, J. Am. Chem. Soc., 1973,
95, 5321.
15 Due to geometrical constraints, only the syn-isomer is anticipated
to undergo intramolecular Schmidt cyclization.
16 S. Shimizu, K. Ohori, T. Arai, H. Sasai and M. Shibasaki, J. Org.
Chem., 1998, 63, 7547.
17 In the asymmetric Michael addition step, use of Shibasaki (R)-ALB
catalyst,16 in place of (S)-ALB catalyst, would lead to the natural
enantiomer of the ABC core of FR901483.
We thank DST (New Delhi) for financial support and
DST-FIST (New Delhi) for the infrastructure facilities. M. P.
(SRF) thanks CSIR (New Delhi) for research fellowship. Authors
thank Mr V. Ramkumar for single crystal X-ray analysis.
c
5780 Chem. Commun., 2012, 48, 5778–5780
This journal is The Royal Society of Chemistry 2012