4902
H. Ibrahim et al. / Tetrahedron Letters 53 (2012) 4900–4902
Table 2
tivity to date for hydrogenation catalysts incorporating a mono-
Hydrogenation of activated olefinsa
phosphine ligand. During our work, we have also reported a new
way to conduct the phosphines using microwave-assisted olefin
hydrophosphination. Development of theses phosphorus com-
pounds as ligands or organocatalysts in asymmetric catalysis is
currently underway in our laboratory.
1 mol% Rh[(COD)2]BF4
CO2R2
NHAc
CO2R2
NHAc
2.2 mol%L*
H2 (1 atm.) / MeOH
rt
*
R1
R1
L⁄
R1
R2
T1/2
Conversionb (%)
Eec (%)
Acknowledgments
exo-1
exo-1
exo-1
exo-1
exo-1
endo-1
Ph
Ph
Ph
H
H
Ph
Me
Me
H
Me
H
8 min
24 h
17 min
4 min
6 min
>95
85
>95
>95
>95
(S)-57
(S)-71d
(S)-30
(S)-72
(S)-70
We wish to thank the French Ministry of Education and Re-
search (MENESR), the CNRS and the University Paris-Sud 11 for
financial supports.
Me
No reaction
a
Reactions were carried out at room temperature under atmospheric pressure of
dihydrogen with 1 mol % of Rh(COD)2BF4 and 2.2 mol % of ligand.
Supplementary data
b
Determined by 1H NMR.
c
Determined by chiral HPLC analysis.
Reaction at À10 °C for 24 h.
d
Supplementary information (SI) available: experimental proce-
dure, characterisation of all new compounds. CCDC 819788 (6b);
819789 (4b) and 819790 (6a) contain the supplementary crystallo-
graphic data for this paper. These data can be obtained free of
charge from the Cambridge Crystallographic Data Centre via
Supplementary data associated with this article can be found, in
Table 3
Hydrogenation of itaconic acid derivativesa
1 mol% Rh[(COD)2]BF4
CO2R
CO2R
2.2 mol% exo-1
*
H2 (1 atm.) / MeOH
rt
RO2C
RO2C
References and notes
R
T1/2 (min)
Conversionb (%)
Eec (%)
H
Me
47
55
>95
>95
(S)-32
(S)-96
1. (a) Nguyen Van Buu, O.; Aupoix, A.; Doan Thi Hong, N.; Vo-Thanh, G. New J.
Chem. 2009, 33, 2060; (b) Nguyen Van Buu, O.; Aupoix, A.; Vo-Thanh, G.
Tetrahedron 2009, 65, 2260; (c) Kumar, V.; Olsen, C. E.; Schaffer, S. J. C.; Parmar,
V. S.; Malhotra, S. V. Org. Lett. 2007, 9, 3905; (d) Truong, T. K. T.; Nguyen Van
Buu, O.; Aupoix, A.; Pégot, B.; Vo-Thanh, G. Curr. Org. Synth. 2012, 1, 53.
2. Kumar, S.; Ramachandran, U. Tetrahedron 2005, 61, 4141.
a
b
c
Reactions were carried out under 1 atm of hydrogen at room temperature.
Determined by 1H NMR.
Determined by chiral HPLC analysis.
3. For amino-alcool and diamine ligands, see: (a) Guillarme, S.; Nguyen, T. X. M.
Tetrahedron: Asymmetry 2008, 19, 1450; (b) Paolucci, C.; Rosini, G. Tetrahedron:
Asymmetry 2007, 18, 2923; (c) Lui, F. W.; Yan, L.; Zhang, J. Y.; Liu, H. M.
Carbohydr. Res. 2006, 314, 332; (d) Decoster, G.; Vandyck, K.; Van der Eycken,
E.; Van der Eycken, J.; Elseviers, M.; Röper, H. Tetrahedron: Asymmetry 2002, 13,
1673.
4. For phosphorus ligands, see: (a) Diéguez, M.; Pàmies, O.; Claver, C. J. Org. Chem.
2005, 70, 3363; (b) Gavrilov, K. N.; Zheglov, S. V.; Vologzhanin, P. A.;
Maksimova, M. G.; Safronov, A. S.; Lyubimov, S. E.; Davankov, V. A.;
Schäffner, B.; Börner, A. Tetrahedron Lett. 2008, 49, 3120; (c) Reetz, M. T.;
Neugebauer, T. Angew. Chem., Int. Ed. 1999, 38, 179; (d) Zhou, H.; Hou, J.; Cheng,
J.; Lu, S.; Fu, H.; Wang, H. J. Organomet. Chem. 1997, 543, 227; (e) Reetz, M. T.;
Mehler, G. Angew. Chem., Int. Ed. 2000, 39, 3889; (f) Gavrilov, K. N.; Zheglov, S.
W.; Vologzhanin, P. A.; Rastorguev, E. A.; Shiryaev, A. A.; Maksimova, M. G.;
Lyubimov, S. E.; Benetsky, E. B.; Safronov, A. S.; Petroveskii, P. V.; Davankov, V.
A.; Shäffner, B.; Börner, A. Russ. Chem. Bull. Int. Ed. 2008, 57, 2311; (g) Sharma, R.
K.; Samuelson, A. G. Tetrahedron: Asymmetry 2007, 18, 2387.
5. (a) Huynh, K. D.; Ibrahim, H.; Toffano, M.; Vo-Thanh, G. Tetrahedron: Asymmetry
2010, 21, 1542; (b) Huynh, K. D.; Ibrahim, H.; Kolodziej, E.; Toffano, M.; Vo-
Thanh, G. New J. Chem. 2011, 35, 2622.
6. For monodente phosphorus compound derived from 1,4: 3,6-dianhydrohexitol
see: (a) Carcedo, C.; Dervisi, A.; Fallis, I. A.; Ooi, L.; Malik, K. M. A. Chem.
Commun. 2004, 1236; (b) Bakos, J.; Heil, B.; Marko, L. J. Organomet. Chem. 1983,
253, 249; (c) Yuan, J. C.; Lu, S. J. Organometallics 2001, 20, 2697.
to the use of microwave irradiation (MW). This technique was
widely developed in our laboratory and in other research groups.10
Under microwave activation, an excellent conversion was obtained
after 5 h affording the regioselective exo phosphine 6b in 47% yield
after purification by flash chromatography.
Treatment of the phosphines-borane 6b and 7b with an excess
of tetrafluoroboric acid dimethylether complex resulted in a quan-
titative formation of the phosphines exo-1 and endo-1 (Scheme 6).
Complexes formed in situ from Rh[(COD)2]BF4 and exo-1 or
endo-1 ligand were examined as catalysts for the enantioselective
hydrogenation of activated olefins (Table 2).
1H NMR analysis showed that complete conversions were ob-
tained in most of cases in few minutes at room temperature under
the atmospheric pressure of dihydrogen. The products were ob-
tained with satisfactory enantioselectivities when the catalyst
was prepared with exo-1 ligand. Surprisingly, no hydrogenation oc-
curred in the presence of endo-1 ligand. On the other hand, in the
presence of Rh-exo-1 catalyst, itaconic acid was hydrogenated
quantitatively, but with a modest enantiomeric excess (32% ee),
whereas, in the same reaction conditions, its corresponding di-
methyl itaconate conducted a good enantioselectivity up to 96%
ee (Table 3).
7. a Bruneau, C.; Renaud, J. L. In Phosphorus Ligands in Asymmetric Catalysis;
Börner, A., Ed.; Wiley-VCH: Weinheim, 2008; Vol. 1, pp 5–33; (b)Mathey, F.,
Ed.Science of Synthesis Applications of Tricoordinated Phosphorus Compounds
in Heterogeneous Catalysis; Thieme Verlag: Stuttgart, 2009; Vol. 42,. Chapter
10 (c) Marinetti, A.; Voituriez, A. Synlett 2010, 174; (d) Wei, Y.; Shi, M. Acc.
Chem. Res. 2010, 43, 1005; (e) Hayashi, T. Acc. Chem. Res. 2000, 33, 354; (f)
Hayashi, T.; Wook Han, J.; Takeda, A.; Tang, J.; Nohmi, K.; Mukaide, K.; Tsuji, H.;
Uozumi, Y. Adv. Synth. Catal. 2001, 343, 279.
In summary, we have developed a synthesis of new monophos-
phine ligands derived from isosorbide and isomannide, natural
renewable sources. The initial results in asymmetric catalysis such
as hydrogenation of olefins showed good catalytic activity and
enantioselectivity, up to 96% ee for dimethyl itaconic ester.
Although the results are certainly still quite modest with respect
to what can be achieved by using well-developed enantioselective
hydrogenation catalysts, this represents the highest enantioselec-
8. Join, B.; Lohier, J. F.; Delacroix, O.; Gaumont, A. C. Synthesis 2008, 19, 3121.
9. Compound 8 was prepared from 3 by an elimination process in the presence of
t-BuOK as base.
10. For recent reviews on microwave chemistry, see: (a) Loupy, A. Microwaves in
Organic Synthesis; Wiley-VCH: Weinheim, 2006; (b) Kappe, C. O.; Stadler, A.
Microwaves in Organic and Medicinal Chemistry; Wiley-VCH: Weinheim, 2005;
(c) Polshettiwar, V.; Varma, R. S. Acc. of Chem. Res. 2008, 41, 629; (d) Aupoix, A.;
Pégot, B.; Vo-Thanh, G. Ultrasound and Microwaves: Recent Advances in Organic
Chemistry, 2011, 57. Edition: Research Signpost Trans world Research Network.
ISBN: 978-81-7895-532-2.