5032
R. Wisastra et al. / Bioorg. Med. Chem. 20 (2012) 5027–5032
an activator 21 of potato 5-lipoxygenase was identified for which
KA is 1.8 mM, is 0.013 and b is 1.4 (Scheme 3). The affinity of
21 for the substrate bound enzyme ( KA) is 24 M. To our knowl-
a
a
l
edge, this is the first activator with micromolar potency for potato
lipoxygenase. These inhibitors might provide valuable starting
points for development of inhibitors that target lipoxygenases,
which is relevant for inflammatory diseases.
Supplementary data
Supplementary data (synthetic procedures and compounds
analytical data as well as kinetic studies, assay description and
molecular docking) associated with this article can be found, in
These data include MOL files and InChiKeys of the most important
compounds described in this article.
References and notes
1. McGinley, C. M.; van der Donk, W. A. Chem. Commun. (Camb.) 2003, 23, 2843.
2. De Caterina, R.; Zampolli, A. N. Engl. J. Med. 2004, 350, 4.
3. Cathcart, M. K.; Folcik, V. A. Free Radic. Biol. Med. 2000, 28, 1726.
4. Holroyde, M. C.; Cole, M.; Altounyan, R. E. C.; Dixon, M.; Elliott, E. V. Lancet
1981, 318, 17.
5. Greene, E. R.; Huang, S.; Serhan, C. N.; Panigrahy, D. Prostaglandins Other Lipid
Mediat. 2011, 96, 27.
6. Chen, M.; Lam, B. K.; Kanaoka, Y.; Nigrovic, P. A.; Audoly, L. P.; Austen, K. F.; Lee,
D. M. J. Exp. Med. 2006, 203, 837.
7. Rea, A. I.; Schmidt, J. M.; Setzer, W. N.; Sibanda, S.; Taylor, C.; Gwebu, E. T.
Fitoterapia 2003, 74, 732.
8. Sullivan, J. T.; Richards, C. S.; Lloyd, H. A.; Krishna, G. Planta Med. 1982, 44, 175.
9. Trevisan, M. T. S.; Pfundstein, B.; Haubner, R.; Würtele, G.; Spiegelhalder, B.;
Bartsch, H.; Owen, R. W. Food Chem. Toxicol. 2006, 44, 188.
10. Shobha, S. V.; Ramadoss, C. S.; Ravindranath, B. J. Nat. Prod. 1994, 57, 1755.
11. Paramashivappa, R.; Phani Kumar, P.; Subba Rao, P. V.; Srinivasa Rao, A. Bioorg.
Med. Chem. Lett. 2003, 13, 657.
12. Grazzini, R.; Hesk, D.; Heininger, E.; Hildenbrandt, G.; Reddy, C. C.; Cox-Foster,
D.; Medford, J.; Craig, R.; Mumma, R. O. Biochem. Biophys. Res. Commun. 1991,
176, 775.
13. Ghizzoni, M.; Haisma, H. J.; Maarsingh, H.; Dekker, F. J. Drug Discovery Today
2011, 16, 504.
14. Pergola, C.; Werz, O. Expert Opin. Ther. Patents 2010, 20, 355.
15. Carter, G. W.; Young, P. R.; Albert, D. H.; Bouska, J.; Dyer, R.; Bell, R. L.;
Summers, J. B.; Brooks, D. W. J. Pharmacol. Exp. Ther 1991, 256, 929.
16. Rai, G.; Kenyon, V.; Jadhav, A.; Schultz, L.; Armstrong, M.; Jameson, J. B.;
Hoobler, E.; Leister, W.; Simeonov, A.; Holman, T. R.; Maloney, D. J. J. Med.
Chem. 2010, 53, 7392.
17. Ngu, K.; Weinstein, D. S.; Liu, W.; Langevine, C.; Combs, D. W.; Zhuang, S.; Chen,
X.; Madsen, C. S.; Harper, T. W.; Ahmad, S.; Robl, J. A. Bioorg. Med. Chem. Lett.
2011, 21, 4141.
Figure 8. Surface tensions of (A) Anacardic acid 18 and (B) compound 21 (C)
compound 23 against the logarithm of concentration. CMC values for A and C were
measured in SLO-1 assay conditions, 0.2 M borate buffer, pH 9.0, rt (t = 19 °C),
whereas CMC value for B was measured in potato 5-LOX assay conditions, 0.1 M
phosphate buffer, pH 6.3, rt (t = 25 °C).
18. Ghizzoni, M.; Boltjes, A.; Graaf, C. d.; Haisma, H. J.; Dekker, F. J. Bioorg. Med.
Chem. 2010, 18, 5826.
19. Ghizzoni, M.; Wu, J.; Gao, T.; Haisma, H. J.; Dekker, F. J.; George Zheng, Y. Eur. J.
Med. Chem. 2012, 47, 337.
20. Uchiyama, M.; Ozawa, H.; Takuma, K.; Matsumoto, Y.; Yonehara, M.; Hiroya, K.;
Sakamoto, T. Org. Lett. 2006, 8, 5517.
21. Molander, G. A.; Dehmel, F. J. Am. Chem. Soc. 2004, 126, 10313.
22. DeLuca, M. R.; Kerwin, S. M. Tetrahedron 1997, 53, 457.
23. Huang, H.; Liu, H.; Jiang, H.; Chen, K. J. Org. Chem. 2008, 73, 6037.
24. Tranchimand, S.; Tron, T.; Gaudin, C.; Iacazio, G. Synth. Commun. 2006, 36, 587.
25. Gibian, M. J.; Galaway, R. A. Biochemistry (N.Y.) 1976, 15, 4209.
26. Ha, T. J.; Kubo, I. J. Agric. Food Chem. 2005, 53, 4350.
27. Verhagen, J.; Vliegenthart, J. F.; Boldingh, J. Chem. Phys. Lipids 1978, 22, 255.
28. Mogul, R.; Johansen, E.; Holman, T. R. Biochemistry (N.Y.) 2000, 39, 4801.
29. Ruddat, V. C.; Whitman, S.; Holman, T. R.; Bernasconi, C. F. Biochemistry (N.Y.)
2003, 42, 4172.
This study identifies salicylate based molecules as allosteric
regulators of lipoxygenase enzyme activity. Such inhibitors might
find applications as starting points for development of therapeutic
agents for asthma and inflammations. Nevertheless, the potency
and selectivity of this compound class for human lipoxygenases re-
mains to be investigated. It is encouraging that the anacardic acid
derived salicylates show clear structure–activity relationships,
which indicates that further optimization of the affinity and selec-
tivity of this compound class might be feasible.
3. Conclusions
30. Wecksler, A. T.; Kenyon, V.; Garcia, N. K.; Deschamps, J. D.; van der Donk, W. A.;
Holman, T. R. Biochemistry 2009, 48, 8721.
31. Leskovac, V. Compehensive Enzyme Kinetics; Kluwer Academic/Plenum: New
York, 2003. Chapter 7, pp 111–116.
32. Egmond, M. R.; Brunori, M.; Fasella, P. M. Eur. J. Biochem. 1976, 61, 93.
33. Butovich, I. A.; Soloshonok, V. A.; Kukhar, V. P. Eur. J. Biochem. 1991, 199, 153.
34. Skaterna, T. D.; Kharytonenko, H. I.; Kharchenko, O. V. Ukr. Biokhim. Zh. 2010,
82, 22.
35. Ivanov, I.; Heydeck, D.; Hofheinz, K.; Roffeis, J.; O’Donnell, V. B.; Kuhn, H.;
Walther, M. Arch. Biochem. Biophys. 2010, 503, 161.
This study demonstrates that anacardic acid 18 and its deriva-
tives are lipoxygenase inhibitors and that their potency depends
on the substitution pattern in the 4- and 6-position of the salicylate
core. A novel inhibitor 23 was identified for soybean lipoxygenase-
1 with a fivefold improved IC50 value compared to anacardic acid
18. Enzyme kinetics reveal a mixed type inhibition pattern for 23
with a Ki of 9.8 l lM (Scheme 2). In addition,
M and a Ki0 of 15.7