ACS Medicinal Chemistry Letters
Letter
Rzhepishevska and collaborators reported the antibacterial
properties of gallium citrate (Ga-Cit) and Ga-DfoB against
Gram-positive and Gram-negative bacteria.31 Growth inhibition
by gallium was affected by the metal−ligand and the media
composition. IC90 values for Ga-DfoB against several bacteria
were higher (mM) than the concentrations screened in this
work. To explore the effect of further iron-restricted conditions,
we determined the MIC values in MHII media with the
addition of metal-chelator 2,2′-bipyridine (Table S2 of the SI).
In general, we observed comparable values between both
assays, corroborating the displayed antibiotic activity of our
synthetic compounds. Moderate enhancement (3-fold) was
observed with loracarbef-conjugate 16 against B. subtilis and S.
aureus (MIC = 3.9−7.8 μM). The iron-depleted media was not
conducive for the culturing of M. vaccae, which failed to grow
after two attempts.
In conclusion, we have developed a convergent approach for
the assembly of siderophore−drug conjugates using a thiol−
maleimide strategy. As anticipated, the novel sideromycins
displayed selective antibacterial properties and provided us with
valuable information suitable for the study of these molecules.
Because the siderophore of choice often determines the
spectrum of activity of these conjugates, the described
methodology could be expanded to the design of Gram-
negative antibacterials through the use of an appropriate
chelator.
REFERENCES
■
(1) Miethke, M.; Marahiel, M. A. Siderophore-Based Iron Acquisition
and Pathogen Control. Microbiol. Mol. Biol. Rev. 2007, 71, 413−451.
(2) Boukhalfa, H.; Crumbliss, A. L. Chemical aspects of siderophore
mediated iron transport. Biometals 2002, 15, 325−339.
(3) Andrews, S. C.; Robinson, A. K.; Rodríguez-Quinones, F.
̃
Bacterial iron homeostasis. FEMS Microbiol. Rev. 2003, 27, 215−237.
(4) Sandy, M.; Butler, A. A Microbial Iron Acquisition: Marine and
Terrestrial Siderophores. Chem. Rev. 2009, 109, 4580−4595.
(5) Hider, R. C.; Kong, X. L. Chemistry and biology of siderophores.
Nat. Prod. Rep. 2010, 27, 637−657.
(6) Braun, V.; Hantke, K. Recent insights into iron import by
bacteria. Curr. Opin. Chem. Biol. 2011, 15, 328−334.
(7) Benz, G.; Schroder, T.; Kurz, J.; Wunsche, C.; Karl, W.; Steffen,
̈
̈
G. J.; Pfitzner, J.; Schmidt, D. Konstitution der Deferriform der
Albomycine δ1, δ2 und ε. Angew. Chem., Int. Ed. 1982, 94, 552−553.
(8) Braun, V.; Gunthner, K.; Hantke, K.; Zimmerman, L. Intracellular
̈
Activation of Albomycin in Escherichia coli and Salmonella
typhimurium. J. Bacteriol. 1983, 156, 308−315.
́
(9) Vertesy, L.; Aretz, W.; Fehlhaber, H.-W.; Kogler, H.; Salmycin,
A.-D. Antibiotics from Streptomyces violaceus, DSM 8286, Having a
Siderophore-Aminoglycoside Structure. Helv. Chim. Acta 1995, 78,
46−60.
́
(10) Duquesne, S.; Destoumieux-Garzon, D.; Peduzzi, J.; Rebuffat, S.
Microcins, gene-encoded antibacterial peptides from enterobacteria.
Nat. Prod. Rep. 2007, 24, 708−734.
(11) Nolan, E. M.; Fischbach, M. A.; Koglin, A.; Walsh, C. T.
Biosynthethic Tailoring of Microcin E492m: Post-translational
Modification Affords an Antibacterial Siderophore-Peptide Conjugate.
J. Am. Chem. Soc. 2007, 129, 14336−14347.
ASSOCIATED CONTENT
■
(12) Dong, L.; Roosenberg, J. M., II; Miller, M. J. Total Synthesis of
Desferrisalmycin B. J. Am. Chem. Soc. 2002, 124, 15001−15005.
(13) Bernier, G.; Girijavallabhan, V.; Murray, A.; Niyaz, N.; Ding, P.;
Miller, M. J.; Malouin, F. Desketoneoenactin-Siderophore Conjugates
for Candida: Evidence of Iron Transport-Dependent Species
Selectivity. Antimicrob. Agents Chemother. 2005, 49, 241−248.
(14) Yoganathan, S.; Sit, C. S.; Vederas, J. C. Chemical synthesis and
biological evaluation of gallidermin-siderophore conjugates. Org.
Biomol. Chem. 2011, 9, 2133−2141.
S
* Supporting Information
Experimental procedures of chemistry and microbiology, and
1H and 13C NMR spectra of reported compounds. This
material is available free of charge via the Internet at http://
AUTHOR INFORMATION
■
Corresponding Author
(15) Miller, M. J.; Walz, A. J.; Zhu, H.; Wu, C.; Moraski, G.;
Mollmann, U.; Tristani, E. M.; Crumbliss, A. L.; Ferdig, M. T.;
̈
Checkley, L.; Edwards, R. L.; Boshoff, H. I. Design, Synthesis, and
Study of a Mycobactin-Artemisinin Conjugate That Has Selective and
Potent Activity against Tuberculosis and Malaria. J. Am. Chem. Soc.
2011, 133, 2076−2079.
(16) Roosenberg, J. M., II; Lin, Y. M.; Lu, Y.; Miller, M. J. Studies
and Syntheses of Siderophores, Microbial Iron Chelators, and Analogs
as Potential Drug Delivery Agents. Curr. Med. Chem. 2000, 7, 159−
197.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We acknowledge the University of Notre Dame and the NIH
(AI 054193) for supporting this work. We appreciate
constructive comments and advice regarding antibacterial
(17) Braun, V.; Pramanik, A.; Gwinner, T.; Koeberle, M.; Bohn, E.
Sideromycins: tools and antibiotics. Biometals 2009, 22, 3−13.
(18) Chu, B. C.; Garcia-Herrero, A.; Johanson, T. H.; Krewulak, K.
D.; Lau, C. K.; Peacock, R. S.; Slavinskaya, Z.; Vogel, H. J. Siderophore
uptake in bacteria and the battle for iron with the host; a bird’s eye
view. Biometals 2010, 23, 601−611.
studies from Dr. Ute Mollman, Jena, Germany. We gratefully
̈
acknowledge the use of the NMR facilities provided by the
Lizzadro Magnetic Resonance Research Center at The
University of Notre Dame (UND) and the mass spectrometry
services provided by The UND Mass Spectrometry &
Proteomics Facility (Mrs. N. Sevova, Dr. W. Boggess, and Dr.
M. V. Joyce; supported by the National Science Foundation
under CHE-0741793).
́ ́
(19) Ji, C.; Juarez-Hernandez, R. E.; Miller, M. J. Exploiting bacterial
iron acquisition: siderophore conjugates. Future Med. Chem. 2012, 4,
297−313.
(20) Koizumi, M.; Endo, K.; Kunimatsu, M.; Sakahara, H.;
Nakashima, T.; Kawamura, Y.; Watanabe, Y.; Saga, T.; Konishi, J.;
Yamamuro, T.; Hosoi, S.; Toyama, S.; Arano, Y.; Yokohama, A. 67Ga-
labeled Antibodies for Immunoscintigraphy and Evaluation of Tumor
Targeting and Drug-Antibody Conjugates in Mice. Cancer Res. 1988,
48, 1189−1194.
(21) Arano, Y.; Matsushima, H.; Tagawa, M.; Koizumi, M.; Endo, K.;
Konishi, J.; Yokoyama, A. A Novel Bifunctional Metabolizable Linker
for the Conjugation of Antibodies with Radionuclides. Bioconjugate
Chem. 1991, 2, 71−76.
ABBREVIATIONS
■
DBU, 1,8-diazabicycloundec-7-ene; DfoB, desferrioxamine B;
Ga-DfoB, Ga3+-complex of DfoB; EDC·HCl, 1-ethyl-3-(3-
dimethylaminopropyl)carbodiimide·HCl; LCMS, liquid chro-
matography mass spectrometry; MHII, Mueller−Hinton agar;
MIC, minimum inhibitory concentration; NHS, N-hydrox-
ysuccinimide; THF, tetrahydrofuran; TFA, trifluoroacetic acid;
TLC, thin layer chromatography
802
dx.doi.org/10.1021/ml300150y | ACS Med. Chem. Lett. 2012, 3, 799−803