S. Karampuri et al. / Bioorg. Med. Chem. Lett. 22 (2012) 6261–6266
6265
HSV-2) and incubated at room temperature. After 1–2 h of incuba-
tion, the cells were washed with fresh EMEM and overlaid with
methylcellulose, so that the virus can spread via cell-to-cell route
to form plaques. The plaques that developed after 2–3 days of incu-
bation were stained with crystal violet. The effective concentration
of test compounds that inhibited the number of viral plaques by
50% (EC50) was interpolated from the dose-response curves.46
We have rationally designed novel
a-pyrone analogs using
structure based in silico approach along with drug like properties
estimation for the synthesis and biological evaluation. Compound
5h was found to be moderately active with respect to Acyclovir
against HSV-1 as well as has limited cytotoxicity. Therefore, we se-
lected 5h as our lead for future optimization and detailed structure
activity relationship. The synthesized compounds were also evalu-
ated for anti-HIV activity on MT-4 cell using MTT assay and none of
the compounds were found significant.
Figure 5a. Plaque reduction assay of HSV-1 at different concentrations of 5h and
ACV.
Acknowledgments
This research received funding from Department of Biotechnol-
ogy (DBT), Delhi, India through grant no BT/PR14237/MED/29/196/
2010. SK thanks CSIR, India for the award of Junior Research Fel-
lowship (JRF). D.K.C. is thankful to DBT, India for the JRF. Author
thanks to ILS, Hyderabad and CIF, BIT Mesra for analytical support.
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
1. Merts, G. J.; Schmidt, O.; Jourden, J. L.; Guinan, M. E.; Remington, M. L.;
Fahblander, A.; Winter, C.; Holmes, K. K.; Corey, L. Sex. Transm. Dis. 1985, 12, 33.
2. Barbour, J. D.; Sauer, M. M.; Sharp, E. R.; Garrison, K. E.; Long, B. R.; Tomiyama,
H.; Bassichetto, K. C.; Oliveira, S. M.; Abbate, M. C.; Nixon, D. F. PLoS One 2007,
2, e1080.
Figure 5b. Plaque reduction assay of HSV-2 at different concentrations of 5h and
ACV.
3. Freedman, E.; Mindel, A. J. HIV Ther. 2004, 9, 4.
4. Heng, M.; Heng, S. Y.; Allen, S. Lancet 1994, 343, 255.
5. Wilson, S. S.; Fakioglu, E.; Herold, B. C. Expert Rev. Anti Infect. Ther. 2009, 7, 559.
6. Elad, S.; Zadik, Y.; Hewson, I.; Hovan, A.; Correa, M. E. P.; Logan, R.; Elting, L. S.;
Spijkervet, F. K. L.; Brennan, M. T. Suppl. Care Cancer 2010, 18, 993.
7. Griffiths, P. D. J. Clin. Virol. 2009, 46, 3.
Table 4
Assessment of anti-HSV activity of 5h by plaque reduction assay on vero cell
Compound
EC50
SI
HSV-1
HSV-2
HSV-1
HSV-2
8. Siakallis, G.; Spandidos, D. A.; Sourvinos, G. Antiviral. Ther. 2009, 1051, 14.
9. Sauerbrei, A.; Deinhardt, S.; Zell, R.; Wutzler, P. Antiviral Res. 2010, 86, 246.
10. Sasivimolphan, P.; Lipipun, V.; Likhitwitayawuid, K.; Takemoto, M.;
Pramyothin, P.; Hattori, M.; Shiraki, K. Antiviral Res. 2009, 84, 95.
11. Speck-Planche, A.; Cordeiro, N. D. S. Curr. Bioinformatics 2011, 6, 81.
12. Ma, Y.; Jin, H.; Valyi-Nagy, T.; Cao, Y.; Yan, Z.; He, B. J. Virol. 2012, 86, 2188.
13. Ju, H. Q.; Xiang, Y. F.; Xin, B. J.; Pei, Y.; Lu, J. X.; Wang, Q. L.; Xia, M.; Qian, C. W.;
Ren, Z.; Wang, S. Y.; Wang, Y. F.; Xing, G. W. Bioorg. Med. Chem. Lett. 2011, 21,
1675.
14. Liu, S.; Knafels, J. D.; Chang, J. S.; Waszak, G. A.; Baldwin, E. T.; Deibel, M. R.;
Thomsen, D. R.; Homa, F. L.; Wells, P. A.; Tory, M. C. J. Biol. Chem. 2006, 281,
18193.
15. Oien, N. L.; Brideau, R. J.; Hopkins, T. A.; Wieber, J. L.; Knechtel, M. L.; Shelly, J.
A.; Anstadt, R. A.; Wells, P. A.; Poorman, R. A.; Huang, A. Antimicrob. Agents
Chemother. 2002, 46, 724.
16. Brideau, R. J.; Knechtel, M. L.; Huang, A.; Vaillancourt, V. A.; Vera, E. E.; Oien, N.
L.; Hopkins, T. A.; Wieber, J. L.; Wilkinson, K. F.; Rush, B. D. Antiviral Res. 2002,
54, 19.
17. Mishra, L. C.; Singh, B. B.; Dagenais, S. Alt. Med. Rev. 2000, 5, 334.
18. Grover, A.; Agrawal, V.; Shandilya, A.; Bisaria, V.; Sundar, D. BMC Bioinformatics
2011, 12, S22.
19. Zavrsnik, D.; Muratovic, S.; Makuc, D.; Plavec, J.; Cetina, M.; Nagl, A.; Clercq, E.
D.; Balzarini, J.; Mintas, M. Molecules 2011, 16, 6023.
20. Liu, S.; Knafels, J. D.; Chang, J. S.; Waszak, G. A.; Baldwin, E. T.; Deibel, M. R.;
Thomsen, D. R.; Homa, F. L.; Wells, P. A.; Tory, M. C.; Poorman, R. A.; Gao, H.;
Qiu, X.; Seddon, A. P. J. Biol. Chem. 2006, 281, 18193.
5h
ACV
4.1 0.5
1.6 0.2
14.5 0.5
1.8 0.3
12.8
81.3
3.6
72.2
The antiviral activity against HSV-1 was evaluated by MTT as-
say.45 Vero cells were seeded onto 96-well plates with a concentra-
tion of 1.0 ꢁ 105cells/ml. After incubation at 37 °C in 5% CO2 for 6 h,
the virus at (0.5 MOI) was added and incubated for 1 h. Different
concentrations of test compounds and standard drug acyclovir
were added to culture wells at a final volume 100 ll in each well.
Each particular concentration was made in triplicate. DMSO (0.1%)
was used as a negative control and acyclovir as a positive control.
After 3 days incubation at 37 °C in 5% CO2, the MTT test was car-
ried out as described above. The % of viral inhibition was calculated
as: [(Atv ꢀ Acv)/(Acd ꢀ Acv)]/100. Atv indicates the absorbance of test
compounds with virus infected cells. Acv and Acd indicate the absor-
bance of the virus control and the absorbance of the cell control.
The concentration which achieved 50% inhibition of virus-induced
cytopathic effects (EC50) was determined. The amount of virus used
in each experiment was based on infected target cells of 0.5 MOI of
both viruses to produce 50% MTT formazan products as in unin-
fected control cells.46
21. Piret, J.; Boivin, G. Antimicrob. Agents Chemother. 2011, 55, 459.
22. Glide-V-5.7. Schrö dinger, LLC, New York, NY, 2011.
23. Schrö dinger. LLC, New York, NY, 2011.
24. Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J. Adv. Drug Deliv. Rev.
2001, 46, 3.
25. Duffy, E. M.; Jorgensen, W. L. J. Am. Chem. Soc. 2000, 122, 2878.
For viral plaque reduction assay, serial dilutions of compounds
in EMEM was added to the infected cells (MOI: 0.5 of HSV-1 or