ACS Medicinal Chemistry Letters
Page 6 of 8
T. J.; Jucker, B. M.; Schnackenberg, C. G.; Townsley, M. I.;
We thank all members of the TRPV4 Program Team at
GlaxoSmithKline for their contribution. We thank Remy Gebleux
and Lina Ding for synthetic contributions. J.P Jarworski and
Michael Klein for TRPV4 FLIPR data; Katrina Rivera, Stephen
Eisennagel and Kevin Baptiste for rat PK data.
Lepore, J. J.; Willette, R. N. An Orally Active TRPV4
Channel Blocker Prevents and Resolves Pulmonary Edema
Induced by Heart Failure. Sci. Transl. Med., 2012, 4,
159ra148.
1
2
3
4
5
6
7
8
(10) Hilfiker, M. A.; Hoang, T. H.; Cornil, J.; Eidam, H.; Matasic,
D.; Roethke, T. J.; Klein, M.; Thorneloe, K. S.; Cheung, M.
Optimization of a Novel Series of TRPV4 Antagonists with
In vivo Activity in a Model of Pulmonary Edema. ACS Med.
Chem. Lett. 2013, 4, 293-296.
(11) Ward, K. W.; Smith, B. R. A comprehensive quantitative and
qualitative evaluation of extrapolation of intravenous
pharmacokinetics parameters from rat, dog, and monkey to
humans. I. Clearance. Drug metabolism and disposition, Vol
32 (6) pp 603-611, 2004.
ABBREVIATIONS
ChromLogD, chromatographic logD at pH 7.4; cmpd, compound;
CL, clearance; CLu, clearance of unbound drug, FLIPR,
fluorometric imaging plate reader; IV, intravenous; Fpo, oral
bioavailability; MRT, mean residence time; PK, pharmacokinetic;
PPB Fu, plasma protein binding fraction unbound; SAR, structure-
activity relationship; TRPV, transient receptor potential vanilloid;
Vdss, volume of distribution at steady state;
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(12) Ward, K. W.; Smith, B. R. A comprehensive quantitative and
qualitative evaluation of extrapolation of intravenous
pharmacokinetics parameters from rat, dog, and monkey to
humans. II. Volume of distribution and mean residence time.
Drug metabolism and disposition, Vol 32 (6) pp 612-619,
2004.
(13) Leeson, P. D.; Springthorpe, B. The influence of drug-like
concepts on decision-making in medicinal chemistry. Nature
reviews drug discovery 6, 881-890 (2007)
(14) Young, R. J.; Green D. V. S.; Luscombe, C. N.; Hill, A. P.
Getting physical in drug discovery II: the impact of
chromatographic hydrophobicity measurements and
aromaticity. Drug discovery today, Vol 16, Numbers 17/18 pp
822-830, 2011.
REFERENCES
(1) Voets, T.; Prenen, J,; Vriens, J.; Watanabe, H.; Janssens, A.;
Wissenbach, U.; Bödding, M.; Droogmans, G.; Nilius, B.;
Molecular determinants of permeation through the cation
channel TRPV4. J. Biol. Chem. 2002, 277, 33704–33710.
(2) Güler, A. D.; Lee, H.; Lida, T.; Shimizu, I.; Tominaga, M.;
Caterina, M. Heat-evoked activation of the ion channel,
TRPV4. J. Neurosci. 2002, 22, 6408-6414.
(3) Strotmann, R.; Harteneck, C.; Nunnenmacher, K.; Schultz,
G.; Plant T. D. OTRPC, a nonselective cation channel that
confers sensitivity to extracellular osmolarity. Nat. Cell Biol.
2000, 2, 695-702.
(4) Delany, N. S.; Hurle, M.; Facer, P.; Alnadaf, T.; Plumpton,
C.; Kinghorn, I.; See, C. G.; Costigan, M.; Anand, P.; Woolf,
C. J.; Crowther, D.; Sanseau, P.; Tate, S. N. Identification and
characterization of a novel human vanilloid receptor-like
protein, VRL-2. Physiol. Genomics. 2001, 4, 165-174
(5) K. S. Thorneloe, A. C. Sulpizio, Z. Lin, D. J. Figueroa, A. K.
Clouse, G. P. McCafferty, T. P. Chendrimada, E. S.
Lashinger, E. Gordon, L. Evans, B. A. Misajet, D. J.
Demarini, J. H. Nation, L. N. Casillas, R. W. Marquis, B. J.
Votta, S. A. Sheardown, X. Xu, D. P. Brooks, N J. Laping, T.
D. Westfall, N-((1S)-1-{[4-((2S)-2-{[(2,4-
(15) Unpublished work (Hilary Eidam, Mui Cheung, Marlys
Hammond).
(16) Skerratt, S. E.; Mills, J. E.; Mistry, J. Identification of false
positives in “HTS hits to lead”: the application of Bayesian
models in HTS triage to rapidly deliver a series of selective
TRPV4 antagonists. Med. Chem. Commun., 2013, 4, 244-251.
(17) Duncton, Matthew A. J. Small Molecule Agonists and
Antagonists of TRPV4 in TRP Channels as Therapeutic
Targets (Ed. Arpad Szallasi) 2015, 205-219.
(18) Fabian, V.; Duncton, Matthew A. J. TRPV4 Agonists and
Antagonists. Current Topics in Medicinal Chemistry, 2011,
11, 2216-2226.
(19) Cheung, M; Bao, W; Behm, D. J.; Brooks, C.A.; Bury, M. J.;
Dowdell, S. E.; Eidam, H. S.; Fox, R. M.; Goodman, K. B.;
Holt, D. A.; Lee, D. Roethke, T. J.; Willette, R. N.; Xu, X.;
Ye, G.; Thorneloe, K. S. Discovery of GSK2193874: an
Orally Active, Potent and Selective Blocker of Transient
Receptor Potential Vanilloid 4. ACS Med. Chem. Lett., 2017,
8, 549-554.
(20) Cheng, H.; Jusko, W. Application of mean residence-time
concepts to pharmacokinetics systems with noninstantaneous
input and nonlinear elimination. Pharmaceutical research, 6,
1, 1989, 4-12
(21) Davis, A.; Ward, S. E. The handbook of medicinal chemistry
principles and practice. Royal Society of Chemistry 2015.
(22) Compounds 2, 4 & 5 were prepared as racemic trans mixtures
for ease of synthesis and profiling. The eutomer of compound
5 demonstrated hTRPV4 IC50 = 1,600 nM
(23) Cernak, T.; Schonherr, H.; Profound methyl effects in drug
discovery and a call for new C-H methylation reactions.
Angew. Chem. Int. Ed. 2013, 52, 12256-12267.
(24) Leung, C. S.; Leung, S. S. F.; Tirado-Rives, J.; Jorgensen, W.
L. Methyl effects on protein-ligand binding. J. Med. Chem.
2012, 55, 4489−4500.
(25) Smith, D. A.; Beaumont, K.; Mauer, T. S. Volume of
Distribution in Drug Design, J. Med. Chem., 2015, 58, 5691–
5698.
dichlorophenyl)sulfonyl]amino}-3-hydroxypropanoyl)- 1-
piperazinyl]carbonyl}-3-methylbutyl)-1-benzothiophene-2-
carboxamide (GSK1016790A), a novel and potent transient
receptor potential vanilloid 4 channel agonist induces urinary
bladder contraction and hyperactivity: Part I. J. Pharmacol.
Exp. Ther. 2008, 326, 432–442.
(6) Jian, M. Y.; King, J. A.; Al-Mehdi, A. B.; Liedtke, W.;
Townsley, M. I. High vascular pressure-induced lung injury
requires P450 epoxygenase-dependent activation of TRPV4.
Am. J. Respir. Cell Mol. Biol. 2008, 38, 386-392.
(7) Alvarez, D. F.; King, J. A.; Weber, D.; Addison, E.; Liedtke,
W.; Townsley, M. I. Transient receptor potential vanilloid 4-
mediated disruption of the alveolar septal barrier: a novel
mechanism of acute lung injury. Circ. Res. 2006, 99, 988-
995.
(8) Willette, R. N.; Bao, W.; Nerurkar, S.; Yue, T. L.; Doe, C. P.;
Stankus, G.; Turner, G. H.; Ju, H.; Thomas, H.; Fishman, C.
receptor potential vanilloid subtype 4 channel causes
endothelial failure and circulatory collapse: Part 2. J.
Pharmacol. Exp. Ther. 2008, 326, 443-452.
(9) Thorneloe, K. S.; Cheung, M.; Bao, W.; Alsaid, H.; Lenhard,
S.; Jian, M.-Y.; Costell, M.; Maniscalco-Hawk, K.; Krawiec,
J. A.; Olzinski, A.; Gordon, E.; Lozinskaya, I.; Elefante, L.;
Qin, P.; Matasic, D. S.; James, C.; Tunstead, J.; Donovan, B.;
Kallal, L.; Waszkiewicz, A.; Vaidya, K.; Davenport, E. A.;
Larkin, J.; Burgert, M.; Casillas, L. N.; Marquis, R. W.; Ye,
G.; Eidam, H. S.; Goodman, K. B.; Toomey, J. R.; Roethke,
(26) Smith, D. A.: Metabolism, pharmacokinetics and toxicity of
functional groups, impact of chemical building blocks on
ADMET, RSC Drug Discovery, RSC Drug Discovery Series
No 1, ISBN 978-1-84973-016-7 2010.
(27) Hakan Gunaydin, Michael D. Altman, J. Michael Ellis, Peter
Fuller, Scott A. Johnson, Brian Lahue, and Blair Lapointe,
6
ACS Paragon Plus Environment