Journal of the American Chemical Society
Page 8 of 10
(7) Kobayashi, Y.; Fukui, K.; Enoki, T.; Kusakabe, K; Kaburagi, Y.
geometries of 1, 2 and 3 used for the CASSCF and NEVPT2
calculations were optimized at the UB3LYP/6-31G* level
of theory. The aryl and tert-butyl substituent groups were
replaced by hydrogen atoms.
Phys. Rev. B 2005, 71, 193406-1–4.
(8) Kobayahi, Y.; Fukui, K.; Enoki, T.; Kusakabe, K. Phys. Rev. B
2006, 73, 125415-1–8.
(9) Sugawara, K.; Sato, T.; Souma, S.; Takahashi, T; Suematsu, H.
Phys. Rev. B 2006, 73, 045124-1–4.
(10) Suenaga, K; Koshino, M. Nature 2010, 468, 1088–1090.
(11) Hou, Z.; Wang, X.; Ikeda, T.; Huang, S.-F.; Terakura, K.;
Boero, M.; Oshima, M.; Kakimoto, M.; Miyata, S. J. Phys.
Chem. C 2011, 115, 5392–5403.
1
2
3
4
5
6
7
8
Crystal data for compound 3a: T = 200(2) K, mono-
clinic, space group P21/n (No. 14), a = 9.3333(7), b =
36.817(2), c = 19.2308(14) Å, = 96.9458(17)˚, V =
6559.6(8) Å3, Z = 4, R1 (wR2) = 0.0853 (0.2470) for 931 pa-
rameters and 14923 independent reflections, GOF = 0.963.
CCDC 903954.
(12) Tao, C.; Jiao, L.; Yazyev, O. V.; Chen, Y.-C.; Feng, J.; Zhang,
X.; Capaz, R. B.; Tour, J. M.; Zettl, A.; Louie, S. G.; Dai, H.;
Crommie, M. F. Nat. Phys. 2011, 7, 616–620.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Crystal data for compound 8: T = 200(2) K, triclinic,
space group P-1 (No. 2), a = 9.7396(3), b = 19.3986(7), c =
21.6326(8) Å, = 77.6474(11), = 89.1137(9), =
84.1088(11)˚, V = 3971.4(2) Å3, Z = 2, R1 (wR2) = 0.0761
(0.1676) for 1133 parameters and 17985 independent reflec-
tions, GOF = 1.022. CCDC 903955.
(13) Pan, M.; Girão, E. C.; Jia, X.; Bhaviripudi, S.; Li, Q.; Kong, J.;
Meunier, V.; Dresselhaus, M. S. Nano Lett. 2012, 12, 1928–
1933.
(14) Barone, V.; Hod, O.; Scuseria, G. E. Nano Lett. 2006, 6, 2748–
2754.
(15) Son, Y.-W.; Cohen, M. L.; Louie, S. G. Nature 2006, 444, 347–
349.
(16) Yang, X. Y.; Dou, X.; Rouhanipour, A.; Zhi, L.; Räder, H. J.;
Müllen, K. J. Am. Chem. Soc. 2008, 130, 4216–4217.
(17) Cai, J.; Ruffieux, P.; Jaafar, R.; Bieri, M.; Braun, T.;
Blankenburg, S.; Muoth, M.; Seitsonen, A. P.; Saleh, M.; Feng,
X.; Müllen, K.; Fasel, R. Nature 2010, 466, 470–473.
(18) Chen, Z.; Lin, Y.-M.; Rooks, M. J.; Avouris, P. Physica E 2007,
40, 228–232.
(19) Han, M. Y.; Özyilmaz, B.; Zhang, Y.; Kim, P. Phys. Rev. Lett.
2007, 98, 206805-1–4.
(20) Kosynkin, D. V.; Higginbotham, A. L.; Sinitskii, A.; Lomeda, J.
R.; Dimiev, A.; Price, B. K.; Tour, J. M. Nature 2009, 458,
872–876.
ASSOCIATED CONTENT
Supporting Information. Electronic absorption spectrum,
cyclic voltammogram, and packing diagram of 3a. ESR and
1
variable temperature H-NMR spectra of 3b. Computational
odd electron density and spin density maps of 3. Details on
the CASSCF and NEVPT2 calculations. CIF file of 3a and 8.
This material is available free of charge via the Internet at
(21) Jiao, L.; Wang, X.; Diankov, G.; Wang, H.; Dai, H. Nat. Nano-
technol. 2010, 5, 321–325.
AUTHOR INFORMATION
(22) Very recently Hong et al. have prepared zigzag edges by the
direct chemical functionalization of graphene, which allows the
direct observation of room temperature magnetic ordering in 30
Å wide ZGNRs. See, Hong, J.; Bekyarova, E.; Liang, P.; de
Heer, W. A.; Haddon, R. C.; Khizroev, S., Sci. Rep. 2012, 2,
624.
(23) Stein, S. E.; Brown, R. L. J. Am. Chem. Soc. 1987, 109, 3721–
3729.
(24) Bendikov, M.; Duong, H. M.; Starkey, K.; Houk, K. N.; Carter,
E. A.; Wudl, F. J. Am. Chem. Soc. 2004, 126, 7416–7417.
(25) Hachmann, J.; Dorando, J. J.; Avilés, M.; Chan, G. K.-L. J.
Chem. Phys. 2007, 127, 134309-1–9.
(26) Moscardó, F.; San-Fabián, E. Chem. Phys. Lett. 2009, 480, 26–
30.
(27) Konishi, A.; Hirao, Y.; Nakano, M.; Shimizu, A.; Botek, E.;
Champagne, B.; Shiomi, D.; Sato, K.; Takui, T.; Matsumoto,
K.; Kurata, H.; Kubo, T. J. Am. Chem. Soc. 2010, 132, 11021–
11023.
(28) Lambert, C. Angew. Chem. Int. Ed. 2010, 50, 1756–1758.
(29) For a recent review, see, Sun, Z.; Ye, Q.; Chunyan, C.; Wu, J.
Chem. Soc. Rev. 2012, 41, 7857–7889.
(30) Eckert, A.; Tomaschek, R. Monatsh. Chem. 1918, 39, 839–864.
(31) Clar, E.; Kelly, W.; Wright, J. W. J. Chem. Soc. 1954, 1108–
1111.
Corresponding Author
ACKNOWLEDGMENT
This work was supported in part by the Grant-in-Aid for Sci-
entific Research on Innovative Areas “Reaction Integration”
(No. 2105) from the Ministry of Education, Culture, Sports,
and Technology of Japan and by the ALCA Program of the
Japan Science and Technology Agency (JST). A. K. acknowl-
edges support from the JSPS Fellowship for Young Scientists.
The authors thank Y. Aso and Y. Ie (the Institute of Science
and Industrial Research, Osaka University) for the variable-
temperature electronic absorption measurements and K.
Wakabayashi (National Institute for Materials Science,
NIMS) for fruitful discussions and helpful comments.
REFERENCES
(1) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.;
Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A.
Science 2004, 306, 666–669.
(2) Neto, A. H. C.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.;
Geim, A. K. Rev. Mod. Phys. 2009, 81, 109–162.
(3) (a) Chen, L.; Hernandez, Y.; Feng, X; Müllen, K. Angew. Chem.
Int. Ed. 2012, 51, 7640–7654. (b) Enoki, T.; Takai, K.; Kiguchi,
M. Bull. Chem. Soc. Jpn. 2012, 85, 249–264. (c) Morita, Y.;
Suzuki, S.; Sato, K.; Takui, T. Nat. Chem. 2011, 3, 197–204.
(4) Tanaka, K.; Yamashita, S.; Yamabe, H; Yamabe, T. Synth. Met.
1987, 17, 143–148.
(5) Fujita, M.; Wakabayashi, K.; Nakada, K; Kusakabe, K. J. Phys.
Soc. Jpn. 1996, 65, 1920–1923.
(6) Nakada, K.; Fujita, M.; Dresselhaus, G; Dresselhaus, M. S.
Phys. Rev. B 1996, 54, 17954–17961.
(32) The formation of multiple bonds in one step is categorized as
time and space integration. See, Suga, S.; Yamada, D.; Yoshida,
J. Chem. Lett. 2010, 39, 404–406.
(33) Imamoto, T.; Takiyama, N.; Nakamura, K.; Hatajima, T.;
Kamiya, Y. J. Am. Chem. Soc. 1989, 111, 4392–4398.
(34) Li, Y.; Wang, Z. Org. Lett. 2009, 11, 1385–1387.
(35) Li, J.; Zhang, K.; Zhang, X.; Huang, K.-W.; Chi, C.; Wu, J. J.
Org. Chem.2010, 75, 856–863.
(36) Döhnert, D.; Koutecký, J. Am. Chem. Soc. 1980, 102, 1789–
1796.
(37) In a multi-configurational scheme, the mixing of a doubly
1
excited configuration H,H→L,L with
a
ground state
1
configuration H,H represents uncoupling of electron pair, and
ACS Paragon Plus Environment