774
B. K. Datta et al. / Tetrahedron Letters 54 (2013) 771–774
complex. However de-protonation of the receptor was observed
during the complexation with Al3+ as the mass spectra show peaks
at 970.3619 which are three units less than those calculated for
[L1 + Al3+]. On the other hand for Pb2+ two hydroxyl groups of the
receptor L1 are deprotonated.
References and notes
1. (a) Martinez-Manez, R.; Sancenon, F. Chem. Rev. 2003, 103, 4419–4476; (b)
Czarnik, A. W. Acc. Chem. Res. 1994, 27, 302–308; (c) Kim, J. S.; Quang, D. T.
Chem. Rev. 2007, 107, 3780–3799; (d) Sinkeldam, R. W.; Greco, N. J.; Tor, Y.
Chem. Rev. 2010, 110, 2579–2619; (e)Fluorescent Chemosensors for Ion and
Molecule Recognition; Czarnik, A. W., Ed.; American Chemical Society:
Washington DC, 1992.
2. Castelino, N.; Castelino, P.; Sannolo, N. Inorganic Lead Exposure: Metabolism
and Intoxication, The Agency for Toxic Substances and Disease Registry
(ATSDR), U.S. Department of Health and Human Services, 1995.
For further insight into the Al3+/Pb2+ binding event of L1 we
have performed 1H NMR titration of the receptor L1 in the presence
of Al3+ and Pb2+ metal ions. Binding of Schiff’s base nitrogen atom
and the hydroxyl group with the metal ions causes significant
downfield shifts of Schiff’s base proton as well as that of the aro-
matic protons during titration with Al3+. The disappearance of
the hydroxyl peak in the presence of Al3+ supports the de-proton-
ation of the receptor L1 during complexation. However in the case
of Pb2+ noticeable upfield shift of the aromatic protons were ob-
served (See Supplementary data).
3. Flegal, A. R.; Smith, D. R. Environ. Res. 1992, 58, 125–133.
4. Lin-Fu, J. S. Lead Poisoning, A Century of Discovery and Rediscovery. In Human
Lead Exposure; Needleman, H. L., Ed.; Lewis Publishing: Boca Raton, FL, 1992.
5. (a) Delhaize, E.; Ryan, P. R. Plant Physiol. 1995, 107, 315–321; (b) Godbold, D. L.;
Fritz, E.; Huttermann, A. Proc. Natl. Acad. Sci. U.S.A. 1988, 85, 3888–3892.
6. (a) Fasman, G. D. Coord. Chem. Rev. 1996, 149, 125–165; (b) Nayak, P. Environ.
Res. 2002, 89, 111–115; (c) Cronan, C. S.; Walker, W. J.; Bloom, P. R. Nature
1986, 324, 140–143; (d) Berthon, G. Coord. Chem. Rev. 2002, 228, 319–341; (e)
Burwen, D. R.; Olsen, S. M.; Bland, L. A.; Arduino, M. J.; Reid, M. H.; Jarvis, R.
Kidney Int. 1995, 48, 469–474.
7. (a) Jung, J. Y.; Han, S. J.; Chun, J.; Lee, C.; Yoon, J. Dyes Pigm. 2012, 94, 423–426;
(b) Hau, F. K.-W.; He, X.; Lam, W. H.; Yam, V. W.-W. Chem. Commun. 2011, 47,
8778–8780; (c) Lu, Y.; Huang, S.; Liu, Y.; He, S.; Zhao, L.; Zeng, X. Org. Lett. 2011,
13, 5274–5277; (d) Maity, D.; Govindaraju, T. Inorg. Chem. 2010, 49, 7229–
7231; (e) Lee, Y. O.; Choi, Y. H.; Kim, J. S. Bull. Korean Chem. Soc. 2007, 28, 151–
154; (f) Kim, H. J.; Kim, S. H.; Quang, D. T.; Kim, J. H.; Suh, H., II; Kim, J. S. Bull.
Korean Chem. Soc. 2007, 28, 811–815.
In conclusion, we have developed a new naphthalene function-
alized benzene based tripodal Schiff’s base ligand for selective
detection of Al3+ and Pb2+ in aqueous medium as well as in physi-
ological pH (aqueous HEPES buffer pH = 7.4). The orientation of the
coordination sites in space of the three arms of the ligand and the
chemical hardness of the ligand may prefer the binding of Al3+ and
Pb2+ over other metal ions. The receptor senses metal ions through
CHEF process without any significant interference from the other
competitive metal ions in the experimental condition.
8. Soroka, K.; Vithanage, R. S.; Phillips, D. A.; Walker, B.; Dasgupta, P. K. Anal.
Chem. 1987, 59, 629–636.
9. Launay, F.; Alain, V.; Destandau, E.; Ramos, N.; Bardez, E.; Baret, P.; Pierre, J. L.
New J. Chem. 2001, 25, 1269–1280.
´
´
10. (a) Kar, C.; Basu, A.; Das, G. Tetrahedron Lett. 2012, 53, 4754–4757; (b) Kar, C.;
Dalton Trans. 2011, 40, 2837–2843; (d) Kar, C.; Dey, S. K.; Das, G. Sens. Lett.
2011, 9, 1430–1434; (e) Dey, S. K.; Das, G. Dalton Trans. 2011, 40, 12048–
12051; (f) Dey, S. K.; Das, G. Chem. Commun. 2011, 47, 4983–4985; (g)
Pramanik, A.; Das, G. Tetrahedron 2009, 65, 2196–2200.
11. (a) Salmon, L.; Thury, P.; Rivi’ere, E.; Ephritikhine, M. Inorg. Chem. 2006, 45, 83–
93; (b) Epstein, D. M.; Choudhary, S.; Churchill, M. R.; Keil, K. M.; Eliseev, A. V.;
Morrow, J. R. Inorg. Chem. 2001, 40, 1591–1596; (c) Da Silveira, V. C.; Luz, J. S.;
Oliveira, C. C.; Graziani, I.; Cirioloand, M. R.; Ferreira, A. M. J. Inorg. Biochem.
2008, 102, 1090–1103; (d) Padhye, S.; Kauffman, G. B. Coord. Chem. Rev. 1985,
63, 127–160; (e) Liand, Y.; Yang, Z. Y. Inorg. Chim. Acta 2009, 362, 4823–4831;
(e) Kasselouri, S.; Garoufis, A.; Katehanakis, A.; Kalkanis, G.; Perlepesand, S. P.;
Hadjiliadis, N. Inorg. Chim. Acta 1993, 207, 255–258.
Acknowledgments
G.D. gratefully acknowledges the Department of Science and
Technology (DST) and Council of Scientific and Industrial Research
(CSIR), New Delhi, India, for financial support. B.K.D., C.K. and A.B.
acknowledge IIT Guwahati, India, for fellowship.
Supplementary data
Supplementary data (synthesis, experimental details, and addi-
tional spectroscopic data) associated with this article can be found,
12. Metzger, A.; Lynch, V. M.; Anslyn, E. V. Angew. Chem., Int. Ed. 1997, 36, 862–865.
13. Benesi, H.; Hildebrand, J. J. Am. Chem. Soc. 1949, 71, 2703–2707.