10.1002/anie.201803539
Angewandte Chemie International Edition
COMMUNICATION
[1]
a) T. Shono, Electroorganic Synthesis, Academic Press, London, 1990;
b) R. D. Little, N. L. Weinberg, Electroorganic Synthesis, Marcel Dekker,
New York, 1991; c) S. Torii, Novel Trends in Elecroorganic Synthesis,
Springer-Verlag, Tokyo, 1998; d) H. Lund, O. Hammerich, Organic
Electrochemistry, 5th ed., CRC Press, Boca Raton, 2015.
[10]
[11]
S. Torii, T. Inokuchi, T. Yukawa, Chem. Lett. 1984, 1063.
C. Li, C.-C. Zeng, L.-M. Hu, F.-L. Yang, S. J. Yoo, R. D. Little,
Electrochim. Acta 2013, 114, 560.
[12]
Zeng, Little and coworkers (ref. 11) reported a dual-mediator Br-/TEMPO
system for two-phase electrochemical a-oxygenation, but the method
was limited to activated 1,2,3,4-tetrahydroisoquinoline derivatives. As
shown in Figure 1, TEMPO is ineffective with the substrates described
in the present study.
[2]
For recent reviews, see: a) J. B. Sperry, D. L. Wright, Chem. Soc. Rev.
2006, 35, 605; b) J.-i. Yoshida, K. Kataoka, R. Horcajada, A. Nagaki,
Chem. Rev. 2008, 108, 2265; c) R. Francke, Beilstein J. Org. Chem.
2014, 10, 2858; d) M. Yan, Y. Kawamata, P. S. Baran, Chem. Rev. 2017,
117, 13230; e) Y. Jiang, K. Xu, C. Zeng, Chem. Rev. 2018, DOI:
10.1021/acs.chemrev.7b00271; f) D. Pletcher, R. A. Green, R. C. D.
Brown, Chem. Rev. 2018, DOI: 10.1021/acs.chemrev.7b00360; g) J.-i.
Yoshida, A. Shimizu, R. Hayashi, Chem. Rev. 2017 DOI:
10.1021/acs.chemrev.7b00475; h) S. Tang, Y. Liu, A. Lei, Chem 2018,
4, 27; i) A. Wiebe, T. Gieshoff, S. Möhle, E. Rodrigo, M. Zirbes, S. R.
Waldvogel, Angew. Chem. Int. Ed. 2018, DOI: 10.1002/anie.201711060;
j) S. Möhle, M. Zirbes, E. Rodrigo, T. Gieshoff, A. Wiebe, S. R.
Waldvogel, Angew. Chem. Int. Ed. 2018, DOI: 10.1002/anie.201712732;
k) Q.-L. Yang, P. Fang, T.-S. Mei, Chin. J. Chem. 2018, 36, 338.
For reviews on mediated electrolysis, see: a) E. Steckhan, Angew. Chem.
Int. Ed. 1986, 28, 683; b) Y. N. Ogibin, M. N. Elinson, G. I. Nikishin, Russ.
Chem. Rev. 2009, 78, 89; c) R. Francke, R. D. Little, Chem. Soc. Rev.
2014, 43, 2492.
[13]
For examples, see: a) H. Richter, R. Fröhlich, C.-G. Daniliuc, O. G.
Mancheño, Angew. Chem. Int. Ed. 2012, 51, 8656; b) S. Sun, C. Li, P.
E. Floreancig, H. Lou, L. Liu, Org. Lett. 2015, 17, 1684; c) C. Yan, Y. Liu,
Q. Wang, Org. Lett. 2015, 17, 5714; d) G. Wang, Y. Mao, L. Liu, Org.
Lett. 2016, 18, 6476; e) H. Long, G. Wang, R. Lu, M. Xu, K. Zhang, S.
Qi, Y. He, Y. Bu, L. Liu, Org. Lett. 2017, 19, 2146.
[14] a) M. Rafiee, K. C. Miles, S. S. Stahl, J. Am. Chem. Soc. 2015, 137,
14751; b) A. Badalyan, S. S. Stahl, Nature 2016, 535, 406; c) A. Das, S.
S. Stahl, Angew. Chem. Int. Ed. 2017, 56, 8892; d) M. Rafiee, F. Wang,
D. P. Hruszkewycz, S. S. Stahl J. Am. Chem. Soc. 2018, 140, 22.
[15]
For representative leading references, see: a) D. P. Hickey, M. S.
McCammant, F. Giroud, M. S. Sigman, S. D. Minteer, J. Am. Chem. Soc.
2014, 136, 15917; b) M. Rafiee, B. Karimi, S. Alizadeh,
ChemElectroChem 2014, 1, 455; c) D. P. Hickey, D. A. Schiedler, I.
Matanovic, P. V. Doan, P. Atanassov, S. D. Minteer, M. S. Sigman, J.
Am. Chem. Soc. 2015, 137, 16179; d) E. J. Horn, B. R. Rosen, Y. Chen,
J. Tang, K. Chen, M. D. Eastgate, P. S. Baran, Nature 2016, 533, 77; e)
X.-Y. Qian, S.-Q. Li, J. Song, H.-C. Xu, ACS Catal. 2017, 7, 2730; f) Y.
Wu, H. Yi, A. Lei, ACS Catal. 2018, 8, 1192; g) B. Schille, N. O. Giltzau,
R. Francke, Angew. Chem., Int. Ed. 2018, 57, 422.
[3]
[4]
[5]
a) T. Shono, H. Hamaguchi, Y. Matsumura J. Am. Chem. Soc. 1975, 97,
4264; b) T. Shono, Y. Matsumura, K. Tsubata, J. Am. Chem. Soc. 1981,
103, 1172.
a) T. Shono, Y. Matsumura, K. Uchida, K. Tsubata, A. Makino, J. Org.
Chem. 1984, 49, 300; b) E. L. Myers, J. G. de Vries, V. K. Aggarwal,
Angew. Chem., Int. Ed. 2007, 46, 1893; d) M. A. Kabeshov, B. Musio, P.
R. D. Murray, D. L. Browne, S. V. Ley, Org. Lett. 2014, 16, 4618.
a) K. D. Moeller, P. L. Wong, Bioorg. Med. Chem. Lett. 1992, 2, 739; b)
K. J. Frankowski, R. Liu, G. L. Milligan, K. D. Moeller, J. Aubé, Angew.
Chem. Int. Ed. 2015, 54, 10555.
[16]
For early precedents, see: a) M. F. Semmelhack, C. S. Chou, D. A.
Cortes, J. Am. Chem. Soc. 1983, 105, 4492; b) T. Inokuchi, S.
Matsumoto, S. Torii, J. Org. Chem. 1991, 56, 2416.
[6]
[17]
[18]
For a comprehensive review, see: J. E. Nutting, M. Rafiee, S. S. Stahl
Chem. Rev. 2018, submitted for publication.
[7]
[8]
a) T. Shono, T. Toda, N. Oshino, Drug Metab. Dispos. 1981, 9, 481. b)
T. Shono, T. Toda, N. Oshino, J. Am. Chem. Soc. 1982, 104, 2639.
For leading references, see: a) S. Suga, M. Okajima, K. Fujiwara, J.-i.
Yoshida, J. Am. Chem. Soc. 2001, 123, 7941; b) J.-i. Yoshida, S. Suga,
Chem. Eur. J. 2002, 8, 2650.
For leading references on Shono oxidation with water as nucleophile,
see, ref. 7 and the following: M. Okita, T. Wakamatsu, Y. Ban, J. Chem.
Soc., Chem. Commun. 1979, 749.
[19]
For the synthesis of N-oxyl mediators, see: M. B. Lauber, S. S. Stahl,
ACS Catal. 2013, 3, 2612 and ref. 15c.
[9]
Modification of the substrate with an "electroauxiliary" provides a
strategy to enhance the substrate scope. For leading references, see ref.
2b and the following: a) J.-i. Yoshida, S. Isoe, Tetrahedron Lett. 1987,
28, 6621; b) S. Suga, M. Watanabe, J.-i. Yoshida, J. Am. Chem. Soc.
2002, 124, 14824; c) S. Suga, M. Watanabe, C.-H. Song, J.-i. Yoshida,
Electrochemistry. 2006, 74, 672.
[20]
[21]
K. D. Collins, F. Glorius, Nat. Chem. 2013, 5, 597.
For relevant discussion, see: a) W. P. Jencks, J. Carriuolo, J. Am. Chem.
Soc. 1960, 82, 1778; b) A. J. Kirby, J. E. Davies, T. A. S. Brandão, P. F.
da Silva, W. R. Rocha, F. Nome, J. Am. Chem. Soc. 2006, 128, 12374.
This article is protected by copyright. All rights reserved.