2092
S. Redon et al. / Tetrahedron Letters 54 (2013) 2089–2092
12. For examples of CM with p-nitrostyrene, see: (a) Hodgson, D. M.; Angrish, D.;
Labande, A. H. Chem. Commun. 2006, 627–628; (b) Robertson, J.; Green, S. P.;
Hall, M. J.; Tyrrell, A. J.; Unsworth, W. P. Org. Biomol. Chem. 2008, 6, 2628–2635.
13. Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Org. Lett. 1999, 1, 953–956.
14. Garber, S. B.; Kingsbury, J. S.; Gray, B. L.; Hoveyda, A. H. J. Am. Chem. Soc. 2000,
122, 8168–8179.
21. Elimination only occurred from the E-olefin, which explains the modest overall
yield (45% for 2 steps).
22. Hashmi, A. S. K. Angew. Chem., Int. Ed. 2005, 44, 6990–6994.
23. Harkat, H.; Weibel, J.-M.; Pale, P. Tetrahedron Lett. 2007, 48, 1439–1442.
24. We did not perform the reaction with AuCl.
25. General procedures for gold-catalysed cyclisations: A sample of AuCl3 catalyst
(5 mol %) was added to a solution of the alkyne in THF (2 mL) under argon. The
mixture was stirred at ambient temperature for 2 h. Work-up A: the solution
was filtered on silica gel and concentrated under vacuum to furnish the desired
compound. Work-up B: the solution was concentrated under vacuum then
filtered on silica gel (30% EtOAc/petroleum ether) to furnish the desired
compound. The general procedure with work-up A was used for the conversion
of alkyne 6f (100 mg, 0.16 mmol) to afford compound 5f as a yellow oil (82 mg,
82%). 1H NMR (CDCl3, 400 MHz) d 7.71 (d, J = 7.6 Hz, 2H), 7.40–7.10 (m, 23H),
5.75 (s, 1H), 4.83–4.57 (m, 8H), 4.20–4.10 (m, 1H), 4.05 (m, 1H), 3.89–3.80 (m,
4H); 13C NMR (CDCl3, 100 MHz) d 149.1, 138.4, 138.3, 138.0, 135.3, 128.9,
128.6, 128.56, 128.53, 128.50, 128.46, 128.3, 128.06, 128.01, 127.97, 127.92,
127.84, 127.82, 127.7, 126.5, 109.6, 84.7, 79.4, 78.1, 77.0, 74.1, 73.6, 73.5, 71.8,
69.7, 69.4; IR (thin film, cmÀ1) 3450, 2922, 2867, 1723, 1602, 1496, 1453, 1362,
1264, 1086, 1070, 1026, 1051; HRMS (EI) m/z calcd for C41H40O5 612.2876;
found: 612.2859. The general procedure with work-up B was used for the
conversion of alkyne 6f (200 mg, 0.33 mmol) to afford compound 8f as a yellow
oil (165 mg, 82%). 1H NMR (CDCl3, 400 MHz) d 7.45–7.10 (m, 25H), 4.90 (dd,
J = 12, 10.8 Hz, 2H), 4.80–4.74 (m, 2H), 4.63 (d, J = 11.6 Hz, 2H), 4.55 (d,
J = 11.6 Hz, 2H), 4.40 (d, J = 12.0 Hz, 1H), 4.14 (d, J = 9.2 Hz, 1H), 3.85–3.80 (m,
3H), 3.54 (t, J = 9.6 Hz, 1H), 3.32 (dd, J = 14.0, 9.6 Hz, 2H), 3.11 (dd, J = 14.0 Hz,
1H); 13C NMR (CDCl3, 100 MHz) d 131.2, 128.6, 128.51, 128.45, 128.38, 128.33,
128.0, 127.9, 127.84, 127.75, 127.69, 127.65, 127.59, 127.05, 127.01, 84.0, 81.4,
78.5, 75.7, 75.4, 75.0, 73.4, 71.4, 68.9, 65.3, 43.8; IR (thin film, cmÀ1) 3445,
3020, 2865, 1720, 1485, 1430, 1362, 1137, 1103, 1094, 1034; HRMS (EI) m/z
calcd for C41H42O6 630.2981; found: 630.2963.
15. For
a review on microwave-assisted olefin metathesis, see: Coquerel, Y.;
Rodriguez, J. Eur. J. Org. Chem. 2008, 1125–1132.
16. Pasetto, P.; Chen, X.; Drain, C. M.; Franck, R. W. Chem. Commun. 2001, 81–82.
17. Procedure for the oxa-Michael addition: To a solution of 1,3,4,5-tetra-O-benzyl-
7-(4-nitrophenyl)-hept-6-en-2-ol (2a) (80 mg, 0.12 mmol) in CH2Cl2 (0.4 mL)
was added 10 lL of DBU (0.06 mmol, 0.5 equiv). The solution was stirred for
24 h under a nitrogen atmosphere, and then was concentrated under vacuum
and chromatographed (SiO2, 30% EtOAc/petroleum ether) to furnish the
desired product 1a as a yellow oil (63 mg, 78%) as a 75:25 mixture of
isomers, which could be partially separated for the purpose of characterisation.
-isomer: 1H NMR (CDCl3, 400 MHz) d 8.05 (d, J = 8.8 Hz, 2H), 7.37–7.27 (m,
a/b
a
20H), 7.16–7.20 (m, 2H), 5.02 (d, J = 10.8 Hz, 1H), 4.93–4.86 (m, 3H), 4.64–4.64
(m, 3H), 4.26 (d, J = 11.4 Hz, 1H), 4.22–4.17 (m, 1H), 3.89–3.79 (m, 3H), 3.67–
3.58 (m, 3H), 3.10–3.07 (m, 2H); 13C NMR (CDCl3, 100 MHz) d 147.0, 138.6,
138.2, 138.0, 137.9, 130.0, 128.7, 128.6, 128.5, 128.1, 128.02, 127.96, 123.7,
82.2, 80.2, 78.1, 75.6, 75.4, 75.3, 73.8, 73.6, 71.9, 69.2, 31.2; HRMS (EI) m/z calcd
for
C
41H41NO7 659.2883; found: 659.2877. b-Isomer: 1H NMR (CDCl3,
400 MHz) d 8.11 (d, J = 8.8 Hz, 2H), 7.44–7.30 (m, 20H), 7.26–7.22 (m, 2H),
4.96–4.67 (m, 4H), 4.65–4.48 (m, 4H), 3.78 (t, J = 8.8 Hz, 1H), 3.67–3.62 (m, 4H),
3.50–3.45 (dt, J = 2.0, 9.2 Hz, 1H), 3.64–3.32 (m, 1H), 3.18 (dd, J = 2.0, 14.0 Hz,
1H), 2.84 (dd, J = 8.8, 14.0 Hz, 1H); 13C NMR (CDCl3, 100 MHz) d 146.8, 138.1,
130.5, 128.7, 128.65, 128.61, 128.54, 128.2, 128.1, 128.0, 127.9, 127.8, 123.4,
87.4, 81.6, 79.4, 79.0, 78.6, 77.5, 76.8, 75.8, 75.3, 75.2, 73.5, 69.0, 37.8; HRMS
(EI) m/z calcd for C41H41NO7 659.2883; found: 659.2877.
18. Corey, E. J.; Fuchs, P. L. Tetrahedron Lett. 1972, 13, 3769–3772.
19. (a) Ohira, S. Synth. Commun. 1989, 19, 561–564; (b) Müller, S.; Liepold, B.; Roth,
G.; Bestmann, J. H. Synlett 1996, 521–522.
26. Wellner, E.; Gustafsson, T.; Bäcklund, J.; Holmdhal, R.; Kihlberg, J.
ChemBioChem 2000, 1, 272–280.
20. Mella, M.; Panza, L.; Ronchetti, F.; Toma, L. Tetrahedron 1988, 44, 1673–1678.