K.E. Dalle et al. / Polyhedron 52 (2013) 1336–1343
1343
[25] J.W. Chen, X.Y. Wang, Y.G. Zhu, J. Lin, X.L. Yang, Y.Z. Li, Y. Lu, Z.J. Guo, Inorg.
Chem. 44 (2005) 3422.
[26] X. Zeng, D. Coquiere, A. Alenda, E. Garrier, T. Prange, Y. Li, O. Reinaud, I. Jabin,
Chem. Eur. J. 12 (2006) 6393.
[27] W. Mathes, W. Sauermilch, T. Klein, Chem. Berichte 86 (1953) 584.
[28] D.A. DeGoey, D.J. Grampovnik, C.A. Flentge, W.J. Flosi, H.-J. Chen, C.M. Yeung,
J.T. Randolph, L.L. Klein, T. Dekhtyar, L. Colletti, K.C. Marsh, V. Stoll, M. Mamo,
D.C. Morfitt, B. Nguyen, J.M. Schmidt, S.J. Swanson, H. Mo, W.M. Kati, A. Molla,
D.J. Kempf, J. Med. Chem. 52 (2009) 2571.
(ii) exchange of the coordinated alcohol for a potentially nucleo-
philic water molecule, (iii) the coordinated alcohol itself is the ac-
tive nucleophile, or (iv) the coordinated alcohol acts as a general
base to activate a neighboring water molecule. The enhanced coor-
dination environment appears unlikely, and previous studies have
questioned the mechanistic steps required for regeneration of the
active site if the alkoxide is the primary nucleophile [36]. Mecha-
nistic pathways involving monodentate coordination of the BDNPP
followed by attack of the nucleophile coordinated to the second
Zn(II) site [56], or a general base acting on a bidentate substrate,
appear possible [36,69,70]. The kinetically relevant pKa (9.4) asso-
ciated with the electronic and steric influences on the zinc(II) site
suggest that the former pathway is more probable.
[29] Y. Morisawa, M. Kataoka, T. Sakamoto, H. Nagahori, N. Kitano, K.I. Kusano, J.
Med. Chem. 21 (1978) 194.
[30] L.J. Farrugia, J. Appl. Cryst. 32 (1999) 837.
[31] L.J. Farrugia, J. Appl. Cryst. 30 (1997) 565.
[32] S.C. Batista, A. Neves, A.J. Bortoluzzi, I. Vencato, R.A. Peralta, B. Szpoganicz,
V.V.E. Aires, H. Terenzi, P.C. Severino, Inorg. Chem. Commun. 6 (2003) 1161.
[33] S.J. Smith, A. Casellato, K.S. Hadler, N. Mitic, M.J. Riley, A.J. Bortoluzzi, B.
Szpoganicz, G. Schenk, A. Neves, L.R. Gahan, J. Biol. Inorg. Chem. 12 (2007)
1207.
[34] SigmaPlot for Windows, Version 10, Systat Software Inc., San Jose, CA.
[35] A.K. Boudalis, R.E. Aston, S.J. Smith, R.E. Mirams, M.J. Riley, G. Schenk, A.G.
Blackman, L.R. Hanton, L.R. Gahan, Dalton Trans. (2007) 5132.
[36] L.J. Daumann, K.E. Dalle, G. Schenk, R.P. McGeary, P.V. Bernhardt, D.L. Ollis, L.R.
Gahan, Dalton Trans. 41 (2012) 1695.
[37] I.H. Segel, Enzyme Kinetics: Behavior and Analysis of Rapid Equilibrium and
Steady State Enzyme Systems, second ed., Wiley-Interscience, New York, 1975.
[38] R.A. Peralta, A.J. Bortoluzzi, B. de Souza, R. Jovito, F.R. Xavier, R.A.A. Couto, A.
Casellato, F. Nome, A. Dick, L.R. Gahan, G. Schenk, G.R. Hanson, F.C.S. de Paula,
E.C. Pereira-Maia, S.D. Machado, P.C. Severino, C. Pich, T. Bortolotto, H. Terenzi,
E.E. Castellano, A. Neves, M.J. Riley, Inorg. Chem. 49 (2010) 11421.
[39] Y. Simon-Manso, J. Phys. Chem. A. 109 (2005) 2006.
[40] C. Hansch, A. Leo, R.W. Taft, Chem. Rev. 91 (1991) 165.
[41] J. Clayden, N. Greeves, S. Warren, Organic Chemistry, second ed., Oxford
University Press, Oxford, 2012.
[42] J. Xia, Y.B. Shi, Y. Zhang, Q. Miao, W.X. Tang, Inorg. Chem. 42 (2003) 70.
[43] M. Livieri, F. Mancin, U. Tonellato, J. Chin, Chem. Commun. (2004) 2862.
[44] E. Kimura, Y. Kodama, T. Koike, M. Shiro, J. Am. Chem. Soc. 117 (1995) 8304.
[45] E. Kimura, I. Nakamura, T. Koike, M. Shionoya, Y. Kodama, T. Ikeda, M. Shiro, J.
Am. Chem. Soc. 116 (1994) 4764.
4. Conclusion
The
complexes
[Zn2(H2L4)(H2O)2](ClO4)
and
[Zn2(H2L5)(CH3CO2)(H2O)](PF6)2possess properties analogous to
hydrolase metalloenzymes [19]. The latter complex has kinetic
properties and a kinetically relevant pKa (6.6) similar to those re-
ported for a number of related complexes and it is proposed that
the active nucleophile is a Zn(II)–OH moiety [36]. Structurally
[Zn2(H2L4)(H2O)2]+ presents a crowded active site motif and a
more basic kinetically relevant pKa (9.4). For this complex mono-
dentate coordination of the substrate followed by attack of the
nucleophile coordinated to the second metal ion is proposed.
Acknowledgement
[46] T. Koike, S. Kajitani, I. Nakamura, E. Kimura, M. Shiro, J. Am. Chem. Soc. 117
(1995) 1210.
[47] C. Bazzicalupi, A. Bencini, E. Berni, A. Bianchi, V. Fedi, V. Fusi, C. Giorgi, P.
Paoletti, B. Valtancoli, Inorg. Chem. 38 (1999) 4115.
This work was funded by a grant from the Australian Research
Council (DP0986613).
[48] S.A. Li, D.X. Yang, D.F. Li, J. Huang, W.X. Tang, New J. Chem. 26 (2002) 1831.
[49] D. Yang, S. Li, D. Li, J. Xia, K. Yu, W. Tang, Dalton Trans. (2002) 4042.
[50] L.V. Penkova, A. Maciag, E.V. Rybak-Akimova, M. Haukka, V.A. Pavlenko, T.S.
Iskenderov, H. Kozlowski, F. Meyer, I.O. Fritsky, Inorg. Chem. 48 (2009) 6960.
[51] L.M. Berreau, Adv. Phys. Org. Chem. 41 (2006) 79.
References
[1] M.A. Sogorb, E. Vilanova, Toxicol. Letts. 128 (2002) 215.
[2] C.J. Jackson, P.D. Carr, J.W. Liu, S.J. Watt, J.L. Beck, D.L. Ollis, J. Mol. Biol. 367
(2007) 1047.
[3] F.M. Raushel, Curr. Opinion Microbiol. 5 (2002) 288.
[4] F. Ely, J.L. Foo, C.J. Jackson, L.R. Gahan, D. Ollis, G. Schenk, Curr. Top. Biochem.
Res. 9 (2007) 63.
[5] D.W. Christianson, J.D. Cox, Annu. Rev. Biochem. 68 (1999) 33.
[6] D.P. Dumas, S.R. Caldwell, J.R. Wild, F.M. Raushel, J. Biol. Chem. 264 (1989)
19659.
[7] C. Jackson, P.D. Carr, H.K. Kim, J.-W. Liu, P. Herrald, N. Mitic, G. Schenk, C.A.
Smith, D.L. Ollis, Biochem. J. 397 (2006) 501.
[8] C.J. Jackson, J.L. Foo, H.K. Kim, P.D. Carr, J.W. Liu, G. Salem, D.L. Ollis, J. Mol. Biol.
375 (2008) 1189.
[9] H. Yang, P.D. Carr, S.Y. McLoughlin, J.-W. Liu, I. Horne, X. Qiu, C.M.J. Jeffires, R.J.
Russell, J.G. Oakeshott, D.L. Ollis, Protein Eng. 16 (2003) 135.
[10] M.M. Benning, H. Shim, F.M. Raushel, H.M. Holden, Biochemistry 40 (2001)
2712.
[11] M.M. Benning, J. Kuo, F. Raushel, H.M. Holden, Biochemistry 34 (1995) 7973.
[12] C.J. Jackson, H.K. Kim, P.D. Carr, J.-W. Liu, D.L. Ollis, Biochim. Biophys. Acta
1752 (2005) 56.
[13] L.R. Gahan, S.J. Smith, A. Neves, G. Schenk, Eur. J. Inorg. Chem. 19 (2009) 2745.
[14] A.J. Kirby, Angew. Chem. Int. Ed. 35 (1996) 707.
[15] M. Komiyama, J. Biochem. 118 (1995) 665.
[16] J.K. Bashkin, Curr. Opinion Chem. Biol. 3 (1999) 752.
[17] G.Q. Feng, J.C. Mareque-Rivas, N.H. Williams, Chem. Commun. (2006) 1845.
[18] G.Q. Feng, D. Natale, R. Prabaharan, J.C. Mareque-Rivas, N.H. Williams, Angew.
Chem. Int. Ed. 45 (2006) 7056.
[19] N. Mitic, S.J. Smith, A. Neves, L.W. Guddat, L.R. Gahan, G. Schenk, Chem. Rev.
106 (2006) 3338.
[20] K. Hadler, N. Mitic, F. Ely, G. Hanson, L. Gahan, J. Larrabee, D. Ollis, G. Schenk, J.
Am. Chem. Soc. 131 (2009) 11900.
[21] G. Schenk, T.W. Elliott, E.W.W. Leung, N. Mitic, L.E. Carrington, L.R. Gahan, L.W.
[22] M. Monroe, Molecular Weight Calculator, Version 6.45, 2004, http://
[23] R.T. Paine, Y.C. Tan, X.M. Gan, Inorg. Chem. 40 (2001) 7009.
[24] S. Striegler, M. Dittel, Inorg. Chem. 44 (2005) 2728.
[52] C. He, S.J. Lippard, J. Am. Chem. Soc. 122 (2000) 184.
[53] M. Yashiro, H. Kaneiwa, K. Onaka, M. Komiyama, Dalton Trans. (2004) 605.
[54] N.V. Kaminskaia, C. He, S.J. Lippard, Inorg. Chem. 39 (2000) 3365.
[55] M. Arca, A. Bencini, E. Berni, C. Caltagirone, F.A. Devillanova, F. Isaia, A. Garau,
C. Giorgi, V. Lippolis, A. Perra, L. Tei, B. Valtancoli, Inorg. Chem. 42 (2003) 6929.
[56] M. Jarenmark, E. Csapo, J. Singh, S. Wockel, E. Farkas, F. Meyer, M. Haukka, E.
Nordlander, Dalton Trans. 39 (2010) 8183.
[57] H. Sakiyama, Y. Igarashi, Y. Nakayama, M.J. Hossain, K. Unoura, Y. Nishida,
Inorg. Chim. Acta 351 (2003) 256.
[58] Y.-H. Chiu, J.W. Canary, Inorg. Chem. 42 (2003) 5107.
[59] R.C. diTargiani, S. Chang, M.H. Salter, R.D. Hancock, D.P. Goldberg, Inorg. Chem.
42 (2003) 5825.
[60] J.C. Mareque-Rivas, R. Prabaharan, S. Parsons, Dalton Trans. (2004) 1648.
[61] Y.-H. Chiu, G.J. Gabriel, J.W. Canary, Inorg. Chem. 44 (2005) 40.
[62] Y. Yoshikawa, K. Kawabe, M. Tadokoro, Y. Suzuki, N. Yanagihara, A. Nakayama,
H. Sakurai, Y. Kojima, Bull. Chem. Soc. Jpn. 75 (2002) 2423.
[63] M. Yashiro, R. Kawahara, J. Biol. Inorg. Chem. 9 (2004) 914.
[64] I. Bertini, C. Luchinat, M. Rosi, A. Sgamellotti, F. Tarantelli, Inorg. Chem. 29
(1990) 1460.
[65] A. Neves, M. Lanznaster, A.J. Bortoluzzi, R.A. Peralta, A. Casellato, E.E.
Castellano, P. Herrald, M.J. Riley, G. Schenk, J. Am. Chem. Soc. 129 (2007) 7486.
[66] M. Lanznaster, A. Neves, A.J. Bortoluzzi, V.V.E. Aires, B. Szpoganicz, H. Terenzi,
P.C. Severino, J.M. Fuller, S.C. Drew, L.R. Gahan, G.R. Hanson, M.J. Riley, G.
Schenk, J. Biol. Inorg. Chem. 10 (2005) 319.
[67] P. Karsten, A. Neves, A.J. Bortoluzzi, M. Lanznaster, V. Drago, Inorg. Chem. 41
(2002) 4624.
[68] G. Schenk, R.A. Peralta, S.C. Batista, A.J. Bortoluzzi, B. Szpoganicz, A.K. Dick, P.
Herrald, G.R. Hanson, R.K. Szilagyi, M.J. Riley, L.R. Gahan, A. Neves, J. Biol. Inorg.
Chem. 13 (2008) 139.
´
[69] G. Parkin, Chem. Rev. 104 (2004) 699.
[70] E. Kimura, Curr. Opinion Chem. Biol. 4 (2000) 207.
[71] B. Bauer-Siebenlist, F. Meyer, E. Farkas, D. Vidovic, J.A. Cuesta-Seijo, R. Herbst-
Irmer, H. Pritzkow, Inorg. Chem. 43 (2004) 4189.