Job/Unit: O21043
/KAP1
Date: 19-09-12 17:44:00
Pages: 5
Modular Synthesis of Planar-Chiral para-Substituted Paracyclophanes
concentrated under reduced pressure to remove the solvents. The
crude product was purified by column chromatography [silica gel;
hexane/EtOAc = 98:02 (for 5a), hexane/EtOAc = 90:10 (for 5b)] to
give diaryl paracyclophanes 5.
[1]
[2]
a) J. Paradies, Synthesis 2011, 3749–3766; b) S. E. Gibson, J. D.
Knight, Org. Biomol. Chem. 2003, 1, 1256–1269; c) R. Gleiter,
H. Hopf, Modern Cyclophane Chemistry, Wiley-VCH,
Weinheim, 2004; d) F. Vögtle, Cyclophane Chemistry, Wiley,
New York, 1993.
a) J. Lahann, M. Balcells, T. Rodon, J. Lee, I. S. Choi, K. F.
Jensen, R. Langer, Langmuir 2002, 18, 3632–3638; b) J. Lah-
ann, H. Höcker, R. Langer, Angew. Chem. 2001, 113, 746; An-
gew. Chem. Int. Ed. 2001, 40, 726–728; c) J. Lahann, R. Langer,
Macromolecules 2002, 35, 4380–4386; d) A. Marrocchi, I. Tom-
asi, L. Vaccaro, Isr. J. Chem. 2012, 52, 41–52; e) E. Elacqua,
L. R. MacGillivray, Eur. J. Org. Chem. 2010, 6883–6894; f) H.
Hopf, Angew. Chem. 2008, 120, 9954; Angew. Chem. Int. Ed.
2008, 47, 9808–9812; g) G. C. Bazan, J. Org. Chem. 2007, 72,
8615–8635.
rac-5a: Recrystallization (hexane) gave colorless crystals. Yield
77%; m.p. 157–159 °C; Rf (hexane/EtOAc = 98:02) = 0.57. 1H
NMR (400 MHz, CDCl3): δ = 7.57 (d, J = 7.5 Hz, 4 H), 7.50 (t, J
= 7.6 Hz, 4 H), 7.38 (t, J = 7.3 Hz, 2 H), 6.77 (d, J = 7.8 Hz, 2 H),
6.70 (s, 2 H), 6.67 (d, J = 7.8 Hz, 2 H), 3.59 (ddd, J = 12.2, 10.0,
2.5 Hz, 2 H), 3.00–2.84 (m, 4 H), 2.65 (ddd, J = 12.2, 10.0, 5.4 Hz,
2 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 141.0, 141.0, 139.7,
137.2, 135.2, 132.1, 129.9, 129.9, 128.7, 127.0, 34.7, 34.3 ppm. IR
(ATR): ν = 2968, 2925, 2853, 1598, 1502, 1472, 1444, 1210, 1074,
˜
1023 cm–1. HRMS: calcd. for C28H24 360.1878; found 360.1876.
(SP)-5b: Recrystallization (hexane) gave colorless crystals. Yield
88%; m.p. 219–220 °C; Rf (hexane/EtOAc = 90:10) = 0.39. 1H
NMR (400 MHz, CDCl3): δ = 8.17 (d, J = 8.1 Hz, 4 H), 7.62 (d,
J = 8.1 Hz, 4 H), 6.73 (s, 2 H), 6.70 (d, J = 7.9 Hz, 2 H), 6.66 (d,
J = 7.9 Hz, 2 H), 3.98 (s, 6 H), 3.57–3.52 (m, 2 H), 3.05–2.83 (m,
4 H), 2.64–2.58 (m, 2 H) ppm. 13C NMR (100 MHz, CDCl3): δ =
167.0, 145.1, 140.5, 139.4, 137.5, 135.2, 131.9, 129.9, 129.7, 129.5,
[3]
[4]
a) S. Dahmen, S. Bräse, Org. Lett. 2001, 3, 4119–4122; b) S.
Ay, R. E. Ziegert, H. Zhang, M. Nieger, K. Rissanen, R. M.
Gschwind, S. Bräse, J. Am. Chem. Soc. 2010, 132, 12899–
12905; c) review: S. Bräse, S. Dahmen, S. Höfener, F. Lauter-
wasser, M. Kreis, R. E. Ziegert, Synlett 2004, 2647–2669; d) S.
Dahmen, S. Bräse, J. Am. Chem. Soc. 2002, 124, 5940–5941.
a) C. J. Friedmann, S. Ay, S. Bräse, J. Org. Chem. 2010, 75,
4612–4614; b) V. I. Rozenberg, D. Y. Antonov, E. V. Sergeeva,
E. V. Vorontsov, Z. A. Starikova, I. V. Fedyanin, C. Schulz, H.
Hopf, Eur. J. Org. Chem. 2003, 2056–2061; c) V. Rozenberg, T.
Danilova, E. Sergeeva, E. Vorontsov, Z. Starikova, A. Korlyu-
kov, H. Hopf, Eur. J. Org. Chem. 2002, 468–477; d) V. Rozen-
berg, T. Danilova, E. Sergeeva, E. Vorontsov, Z. Starikova, K.
Lysenko, Y. Belokon, Eur. J. Org. Chem. 2000, 3295–3303.
para-Dicarboxylic acid: R. Gray, V. Boekelheide, J. Am. Chem.
Soc. 1979, 101, 2128–2136.
para-Esters: V. I. Rozenberg, E. L. Popova, H. Hopf, Helv.
Chim. Acta 2002, 85, 431–441.
para-Styryl: a) D. Bléger, D. Kreher, F. Mathevet, A.-J. Attias,
I. Arfaoui, G. Metgé, L. Douillard, C. Fiorini-Debuisschert, F.
Charra, Angew. Chem. 2008, 120, 8540; Angew. Chem. Int. Ed.
2008, 47, 8412–8415; b) G. P. Bartholomew, G. C. Bazan, J.
Am. Chem. Soc. 2002, 124, 5183–5196.
para-Bromo: a) K. P. Butin, A. A. Moiseeva, T. V. Magdesieva,
E. V. Sergeeva, V. I. Rozenberg, V. G. Kharitonov, Russ. Chem.
Bull. 1994, 43, 783–789; b) N. V. Vorontsova, V. I. Rozenberg,
E. V. Sergeeva, E. V. Vorontsov, Z. A. Starikova, K. A. Lys-
senko, H. Hopf, Chem. Eur. J. 2008, 14, 4600–4617.
A. C. Garcia Espino, Dissertation, University of Göttingen,
1989.
a) B. König, B. Knieriem, A. Meijere, Chem. Ber. 1993, 126,
1643–1650; b) L. Czuchajowski, A. Zemanek, Pol. J. Chem.
1990, 64, 499–504; c) A. K. Wisor, L. Czuchajowski, Monatsh.
Chem. 1983, 114, 1023–1034.
a) M. Montanari, A. Bugana, A. K. Sharma, D. Pasini, Org.
Biomol. Chem. 2011, 9, 5018–5020; b) C.-Y. Yu, M. Helliwell,
J. Raftery, M. L. Turner, Chem. Eur. J. 2011, 17, 6991–6997; c)
A. R. Forrester, R. Ramasseul, J. Chem. Soc. B 1971, 1638–
1644; d) W. Rebafka, H. A. Staab, Angew. Chem. 1973, 85,
831–832; e) A. Davatz, W. Jenny, Chimia 1974, 28, 183–185; f)
R. C. Helgeson, J. M. Timko, D. J. Cram, J. Am. Chem. Soc.
1974, 96, 7380–7382.
128.7, 52.1, 34.5, 34.1 ppm. IR (ATR): ν = 2945, 1705, 1602, 1431,
˜
1276, 1262, 1180, 1101, 1014 cm–1. HRMS: calcd. for C32H28O4
476.1988; found 476.1989. [α]20 = +403.0 (c = 1, DCM). HPLC
(Chiralcel OD-H column, n-hexane/iPrOH = 90:10, flow rate =
1 mLmin–1, λ = 365 nm): tR = 14.5 (S), 25.5 min (R); Ͼ99%ee.
rac-6a: Recrystallization (hexane) gave colorless crystals. Yield
[5]
[6]
[7]
1
81%; m.p. 90–92 °C; Rf (hexane/EtOAc = 98:02) = 0.51. H NMR
(400 MHz, CDCl3): δ = 7.51–7.39 (m, 5 H), 7.02 (dd, J = 7.9,
1.9 Hz, 1 H), 6.68 (dd, J = 7.9, 1.9 Hz, 1 H), 6.65 (s, 1 H), 6.59–
6.54 (m, 2 H), 6.27 (s, 1 H), 3.48–3.36 (m, 2 H), 3.21 (dd, J = 8.4,
6.0 Hz, 2 H), 2.93–2.67 (m, 4 H) ppm. 13C NMR (100 MHz,
CDCl3): δ = 147.2, 142.6, 139.8, 139.4, 139.3, 139.0, 135.0, 132.6,
132.3, 131.9, 130.2, 130.0, 129.5, 129.4, 128.7, 127.5, 120.3, 34.3,
33.9, 33.5, 31.3 ppm. IR (KBr): ν = 2932, 2857, 1597, 1477, 1420,
˜
1247, 1211, 1141, 1071, 1029 cm–1. C23H19F3O3S (432.46): calcd. C
63.88, H 4.43, S 7.41; found C 63.56, H 4.58, S 7.49.
[8]
rac-6b: Recrystallization (hexane) gave colorless crystals. Yield
89%; m.p. 122–125 °C; Rf (hexane/EtOAc = 90:10) = 0.53. 1H
NMR (400 MHz, CDCl3): δ = 8.16 (d, J = 8.1 Hz, 2 H), 7.53 (d,
J = 8.1 Hz, 2 H), 7.02 (dd, J = 8.0, 1.6 Hz, 1 H), 6.67 (s, 1 H), 6.63
(dd, J = 8.0, 1.6 Hz, 1 H), 6.59–6.54 (m, 2 H), 6.29 (s, 1 H), 3.97
(s, 3 H), 3.48–3.42 (m, 1 H), 3.39–3.30 (m, 1 H), 3.23–3.20 (m, 2 H),
2.95–2.78 (m, 3 H), 2.68–2.60 (m, 1 H) ppm. 13C NMR (100 MHz,
CDCl3): δ = 167.0, 147.8, 144.1, 141.7, 140.2, 139.4, 135.3, 132.8,
132.6, 132.4, 130.5, 130.3, 130.2, 129.8, 129.7, 129.5, 120.5, 52.4,
[9]
[10]
[11]
34.6, 34.1, 33.7, 31.6 ppm. IR (KBr): ν = 2949, 2858, 1722, 1609,
˜
1421, 1281, 1247, 1213, 1141, 1070, 1019 cm–1. C25H21F3O5S
(490.49): calcd. C 61.22, H 4.32, S 6.54; found C 60.95, H 4.41, S
6.62.
Supporting Information (see footnote on the first page of this arti-
cle): All preparation procedures as well as 1H NMR and 13C NMR
spectra for all compounds and HPLC chromatograms.
[12]
[13]
a) K. Y. Kay, Y. G. Baek, D. W. Han, S. Y. Yeu, Synthesis 1997,
35–37; b) H. J. Reich, D. J. Cram, J. Am. Chem. Soc. 1969, 91,
3527–3533.
Monotriflate 2-OTf is known: a) B. Ortner, H. Hubner, P.
Gmeiner, Tetrahedron: Asymmetry 2001, 12, 3205–3208; b) M.
Kreis, S. Bräse, Adv. Synth. Catal. 2005, 347, 313–319; c) M.
Kreis, C. J. Friedmann, S. Bräse, Chem. Eur. J. 2005, 11, 7387–
7394; for the nonaflate: d) M. Kreis, M. Nieger, S. Bräse, J.
Organomet. Chem. 2006, 691, 2171–2181.
Note Added in Proof (September 19, 2012): The stereochemistry of
one product has been proven by a molecular structure determined
by X-ray diffraction.[17]
Acknowledgments
M. C. acknowledges the Ataturk University for the financial sup-
port.
[14]
I. V. Fedyanin, K. A. Lyssenko, N. V. Vorontsova, V. I. Rozen-
berg, M. Y. Antipin, Mendeleev Commun. 2003, 15–16.
Eur. J. Org. Chem. 0000, 0–0
© 0000 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
3