LETTER
Selective Allylation of Azo Compounds
639
(5) (a) Rabjohn, N. J. Am. Chem. Soc. 1948, 70, 1181.
In conclusion, we have developed a novel Grignard-type
α-allylation of azo compounds with allylic barium re-
agents that are generated from allylic chlorides and reac-
tive barium. This method is synthetically useful in terms
of regioselectivity and stereoselectivity, and affords vari-
ous α-allylated hydrazines in moderate to high yields.10,11
In addition, the site-selective α-allylation of asymmetric
azo compounds has also been achieved to yield isomeric
ratios of up to 93:7. The utility of the α-allylated product
has been further demonstrated by its transformation into
an α-allylated amine through reductive N–N bond cleav-
age. Further studies on related reactions promoted by bar-
ium reagents are in progress.
(b) Brimble, M. A.; Heathcock, C. H. J. Org. Chem. 1993,
58, 5261. (c) Künneth, R.; Feldmer, C.; Knoch, F.; Kisch, H.
Chem. Eur. J. 1995, 1, 441. (d) Magnus, P.; Garizi, N.;
Seibert, K. A.; Ornholt, A. Org. Lett. 2009, 11, 5646.
(6) Brown, M. J.; Clarkson, G. J.; Inglis, G. G.; Shipman, M.
Org. Lett. 2011, 13, 1686.
(7) For a review of reductive N–N bond cleavage of hydrazines,
see: Gilchrist, T. L. In Comprehensive Organic Synthesis;
Vol. 8; Trost, B. M.; Fleming, I., Eds.; Pergamon: Oxford,
1991, 388.
(8) Zhang, Y.; Tang, Q.; Luo, M. Org. Biomol. Chem. 2011, 9,
4977.
(9) Kaupp, M.; Schleyer, P. v. R. J. Am. Chem. Soc. 1992, 114,
491.
(10) Carreira and co-workers have reported that the cobalt-
catalyzed hydrohydrazination of dienes provided allylic
hydrazines with good regioselectivity, see: Waser, J.;
González-Gómez, J. C.; Nambu, H.; Huber, P.; Carreira, E.
M. Org. Lett. 2005, 7, 4249.
Acknowledgment
We gratefully acknowledge financial support from the Iodine Re-
search Project in Chiba University led by Professor Hideo Togo.
(11) α-Selective Allylation: Synthesis of (E)-1-(3,7-
Dimethylocta-2,6-dien-1-yl)-1,2-diphenylhydrazine
(Scheme 2 and Table 2, Entry 2); Typical Procedure: To
a solution of biphenyl (370 mg, 2.4 mmol) in anhydrous
THF (5 mL) was added freshly cut lithium (16.7 mg, 2.4
mmol). Stirring the mixture at r.t. for 2 h gave a dark-blue
lithium biphenylide solution. Anhydrous BaI2 (470 mg, 1.2
mmol) was placed in a separate flask, and this was covered
with anhydrous THF (5 mL) and stirred at r.t. for 20 min. To
the solution of BaI2 in THF was added at r.t. a solution of
lithium biphenylide in THF under an argon stream. The
reaction mixture was stirred at r.t. for 20 min, then to the
resulting dark-brown suspension of reactive barium (1.2
mmol) in THF (10 mL) was added a solution of geranyl
chloride (0.185 mL, 1.0 mmol) in THF (2 mL) at –78 °C by
syringe pump (6 mL/h). After stirring for 20 min, the
mixture was treated with a solution of azobenzene (91.1 mg,
0.5 mmol) in THF (2 mL) at –78 °C (slow addition at 6
mL/h) and stirred for 10 min at this temperature. To the
mixture was added sat. aq NH4Cl (5 mL), and the aqueous
layer was extracted with Et2O (3 × 10 mL). The combined
organic extracts were washed with sodium thiosulfate (10%
w/v) and brine, dried over Na2SO4, and concentrated in
vacuo after filtration. The residual crude product was
purified by column chromatography on silica gel (hexane–
EtOAc, 20:1 then 80:1) to afford the allylic hydrazine. The
chemical yield was determined to be 77% by 1H NMR
spectroscopic analysis using 1,4-bis(trimethylsilyl)benzene
as an internal standard, and the α/γ and E/Z ratios were
determined to be >99:1 and 99:1, respectively, by 1H NMR
and HPLC analyses. 1H NMR (500 MHz, CDCl3): δ = 7.26–
7.20 (m, 2 H, ArH), 7.01 (dd, J = 7.7, 1.0 Hz, 2 H, ArH),
6.84–6.79 (m, 4 H, ArH), 5.57 (br s, 1 H, NH), 5.28 (dt,
J = 1.5, 6.8 Hz, 1 H, CH), 5.03 (tt, J = 8.0, 1.4 Hz, 1 H, CH),
4.10 (br s, 2 H, CH), 2.11–2.00 (m, 4 H, CH), 1.68 (d, J = 0.8
Hz, 3 H, CH), 1.59 (s, 3 H, CH), 1.58 (d, J = 0.85 Hz, 3 H,
CH); 13C NMR (125 MHz, CDCl3): δ = 150.2, 147.8, 141.3,
131.8, 129.3 (2C), 129.1 (2C), 123.9, 119.7, 118.7, 117.8,
113.5 (2C), 112.9 (2C), 48.1, 39.6, 26.3, 25.7, 17.7, 16.2; IR
(neat): 3321, 2965, 2922, 1600, 1495, 1596, 1254, 749, 692
cm–1; HRMS (ESI): m/z [M + H]+ calcd for [C22H29N2]+:
321.2325; found: 321.2322.
References and Notes
(1) (a) Sell, M. S.; Rieke, R. D. Synth. Commun. 1995, 25, 4107.
For reviews, see: (b) Rieke, R. D.; Sell, M. S.; Klein, W. R.;
Chen, T.-A.; Brown, J. D.; Hanson, M. V. In Active Metals.
Preparation, Characterization, Applications; Fürstner, A.,
Ed.; VCH: Weinheim, 1996, 1. (c) Rieke, R. D.; Hanson, M.
V. Tetrahedron 1997, 53, 1925.
(2) For reactions of allylic barium reagents, see:
(a) Yanagisawa, A.; Habaue, S.; Yamamoto, H. J. Am.
Chem. Soc. 1991, 113, 8955. (b) Yanagisawa, A.; Habaue,
S.; Yasue, K.; Yamamoto, H. J. Am. Chem. Soc. 1994, 116,
6130. For reviews, see: (c) Yanagisawa, A.; Yamamoto, H.
In Active Metals. Preparation, Characterization,
Applications; Fürstner, A., Ed.; VCH: Weinheim, 1996, 61.
(d) Yanagisawa, A. In Science of Synthesis; Vol. 7;
Yamamoto, H., Ed.; Thieme: Stuttgart, 2004, 695.
(e) Yanagisawa, A. In Main Group Metals in Organic
Synthesis; Vol. 1; Yamamoto, H.; Oshima, K., Eds.; Wiley-
VCH: Weinheim, 2004, 175. For related strontium reagents,
see: (f) Miyoshi, N.; Kamiura, K.; Oka, H.; Kita, A.;
Kuwata, R.; Ikehara, D.; Wada, M. Bull. Chem. Soc. Jpn.
2004, 77, 341. (g) Miyoshi, N.; Ikehara, D.; Kohno, T.;
Matsui, A.; Wada, M. Chem. Lett. 2005, 34, 760.
(h) Miyoshi, N. In Science of Synthesis; Vol. 7; Yamamoto,
H., Ed.; Thieme: Stuttgart, 2004, 685. (i) Miyoshi, N.;
Ikehara, D.; Matsuo, T.; Kohno, T.; Matsui, A.; Wada, M.
J. Synth. Org. Chem., Jpn. 2006, 64, 845.
(3) Yanagisawa, A.; Koide, T.; Yoshida, K. Synlett 2010, 1515.
(4) (a) Rutjes, F. P. J. T.; Hiemstra, H.; Mooiweer, H. H.;
Speckamp, W. N. Tetrahedron Lett. 1988, 29, 6975.
(b) Yamamoto, Y.; Yumoto, M.; Yamada, J. Tetrahedron
Lett. 1991, 32, 3079. (c) Kano, N.; Yamamura, M.;
Kawashima, T. J. Am. Chem. Soc. 2004, 126, 6250.
(d) Yamamura, M.; Kano, N.; Kawashima, T. J. Organomet.
Chem. 2007, 692, 313. (e) De Matteis, V.; van Delft, F. L.;
Tiebes, J.; Rutjes, F. P. J. T. Synlett 2008, 351. (f) Klimenko,
I. P.; Medvedev, A. F.; Korolev, V. A.; Kolomnikova, G. D.;
Tomilov, Y. V.; Bubnov, Y. N. J. Organomet. Chem. 2009,
694, 2106.
© Georg Thieme Verlag Stuttgart · New York
Synlett 2013, 24, 635–639