Journal of the American Chemical Society
Communication
(7) Burton, D. J.; Yang, Z.-Y. Tetrahedron 1992, 48, 189.
good yield of 66% for the trifluoromethylation of mesitylene
could be achieved under visible light irradiation with a household
fluorescent light bulb in a mixture solution of acetone-diacetyl
(9:1). Besides acetone, a variety of other solvents, such as
acetonitrile, ethyl acetate, and water, also worked well with
diacetyl (Table S3). In contrast, no reaction occurred in pure
solvent without diacetyl under the same conditions, indicating
the crucial role of diacetyl for the visible light-induced
trifluoromethylation reaction. Finally, the reaction scope was
tested under the optimized reaction conditions, which include
the use of 4 equiv of triflinate in 1.0 mL of ethyl acetate-diacetyl
mixture (4:1) under visible light irradiation from a 300 W xenon
lamp with a 400 nm long-pass filter (Scheme 3c). It was found
that most substrates listed in Scheme 2 proceeded well in the
visible light system with comparable yields. Importantly, the
reaction was also compatible with aldehyde (25) and halogen
(26, 27) groups, which are not stable under UV irradiation.
Purine (28) and bipyridine (29), widely used nitrogen-
containing heterocycles and bidentate chelating ligands,
respectively, were also operative smoothly with high regiose-
lectivity by this method.
In summary, an efficient and practical approach to the
photoinduced trifluoromethylation of arenes and heteroarenes
was developed with easily handled sodium triflinate. The value of
this strategy has been highlighted via the trifluoromethylation of
biologically active molecules under either UV or visible light
irradiation. Significantly, this photochemical strategy employed
acetone, one of the most widely used and cheapest organic
solvents, instead of expensive metal catalyst or dangerous
peroxides to generate CF3 radical, which provides a greener route
to cost-effective large-scale synthesis of trifluoromethylated
chemicals.
(8) Furuya, T.; Kamlet, A. S.; Ritter, T. Nature 2011, 473, 470.
(9) Chen, M.; Buchwald, S. L. Angew. Chem., Int. Ed. 2013, 52, 11628.
(10) Beatty, J. W.; Douglas, J. J.; Cole, K. P.; Stephenson, C. R. J. Nat.
Commun. 2015, 6, 7919.
(11) Cho, E. J.; Senecal, T. D.; Kinzel, T.; Zhang, Y.; Watson, D. A.;
Buchwald, S. L. Science 2010, 328, 1679.
(12) Wang, X.; Truesdale, L.; Yu, J.-Q. J. Am. Chem. Soc. 2010, 132,
3648.
(13) Morimoto, H.; Tsubogo, T.; Litvinas, N. D.; Hartwig, J. F. Angew.
Chem., Int. Ed. 2011, 50, 3793.
(14) Liu, T.; Shen, Q. Org. Lett. 2011, 13, 2342.
(15) Senecal, T. D.; Parsons, A. T.; Buchwald, S. L. J. Org. Chem. 2011,
76, 1174.
(16) Chu, L.; Qing, F.-L. J. Am. Chem. Soc. 2012, 134, 1298.
(17) Besset, T.; Schneider, C.; Cahard, D. Angew. Chem., Int. Ed. 2012,
51, 5048.
(18) Langlois, B. R.; Laurent, E.; Roidot, N. Tetrahedron Lett. 1991, 32,
7525.
(19) Nagib, D. A.; MacMillan, D. W. C. Nature 2011, 480, 224.
(20) Ji, Y.; Brueckl, T.; Baxter, R. D.; Fujiwara, Y.; Seiple, I. B.; Su, S.;
Blackmond, D. G.; Baran, P. S. Proc. Natl. Acad. Sci. U. S. A. 2011, 108,
14411.
(21) Ye, Y.; Lee, S. H.; Sanford, M. S. Org. Lett. 2011, 13, 5464.
(22) Ye, Y.; Kunzi, S. A.; Sanford, M. S. Org. Lett. 2012, 14, 4979.
̈
(23) Cui, L.; Matusaki, Y.; Tada, N.; Miura, T.; Uno, B.; Itoh, A. Adv.
Synth. Catal. 2013, 355, 2203.
(24) Sladojevich, F.; McNeill, E.; Borgel, J.; Zheng, S.-L.; Ritter, T.
̈
Angew. Chem., Int. Ed. 2015, 54, 3712.
(25) Natte, K.; Jagadeesh, R. V.; He, L.; Rabeah, J.; Chen, J.; Taeschler,
C.; Ellinger, S.; Zaragoza, F.; Neumann, H.; Bruckner, A.; Beller, M.
̈
Angew. Chem., Int. Ed. 2016, 55, 2782.
(26) Lefebvre, Q.; Hoffmann, N.; Rueping, M. Chem. Commun. 2016,
52, 2493.
(27) Sun, C.-L.; Shi, Z.-J. Chem. Rev. 2014, 114, 9219.
(28) Li, L.; Fan, S.; Mu, X.; Mi, Z.; Li, C.-J. J. Am. Chem. Soc. 2014, 136,
7793.
(29) Sun, J.; Peng, X.; Guo, H. Tetrahedron Lett. 2015, 56, 797.
(30) Mfuh, A. M.; Doyle, J. D.; Chhetri, B.; Arman, H. D.; Larionov, O.
V. J. Am. Chem. Soc. 2016, 138, 2985.
(31) Li, L.; Liu, W.; Zeng, H.; Mu, X.; Cosa, G.; Mi, Z.; Li, C.-J. J. Am.
Chem. Soc. 2015, 137, 8328.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
Experimental details and data (PDF)
(32) Liu, W.; Li, L.; Li, C.-J. Nat. Commun. 2015, 6, 6526.
(33) Coyle, J. D.; Carless, H. A. J. Chem. Soc. Rev. 1972, 1, 465.
(34) Singh, P. J. Chem. Soc. C 1971, 714.
AUTHOR INFORMATION
■
(35) Buchi, G.; Inman, C. G.; Lipinsky, E. S. J. Am. Chem. Soc. 1954, 76,
̈
Corresponding Authors
4327.
(36) Yang, N. C.; Yang, D.-D. H. J. Am. Chem. Soc. 1958, 80, 2913.
(37) Chatgilialoglu, C.; Crich, D.; Komatsu, M.; Ryu, I. Chem. Rev.
1999, 99, 1991.
Notes
(38) Xia, J.-B.; Zhu, C.; Chen, C. J. Am. Chem. Soc. 2013, 135, 17494.
(39) Xia, J.-B.; Zhu, C.; Chen, C. Chem. Commun. 2014, 50, 11701.
(40) Dolbier, W. R. Chem. Rev. 1996, 96, 1557.
(41) Heidelberger, C. Cancer Res. 1970, 30, 1549.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was financially supported by the Canada Research
Chair (Tier 1) foundation, the Natural Sciences and Engineering
́
Research Council of Canada, the Fonds de recherche sur la
nature et les technologies, Canada Foundation for Innovation
(CFI), and McGill University.
REFERENCES
■
(1) Muller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881.
̈
(2) Hagmann, W. K. J. Med. Chem. 2008, 51, 4359.
(3) Meanwell, N. A. J. Med. Chem. 2011, 54, 2529.
(4) Zhou, Y.; Wang, J.; Gu, Z.; Wang, S.; Zhu, W.; Acena, J. L.;
̃
Soloshonok, V. A.; Izawa, K.; Liu, H. Chem. Rev. 2016, 116, 422.
(5) Alonso, C.; Martínez de Marigorta, E.; Rubiales, G.; Palacios, F.
Chem. Rev. 2015, 115, 1847.
(6) Tomashenko, O. A.; Grushin, V. V. Chem. Rev. 2011, 111, 4475.
D
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX