Copper(I) salt/PEG-400 catalysis
C14), 127.36 (C5), 127.75 (d, JCF = 11.6 Hz, C10), 128.13 (C6),
129.44 (d, JCF = 8.0 Hz, C13), 136.37 (C3), 140.32 (C9), 156.29
(d, JCF = 251.0 Hz, C11), assignments to C4–C7 are interchangeable.
Anal. Calcd for C13H9FN2: C, 73.57; H, 4.27; N, 13.20. Found: C, 73.58;
H, 4.34; N, 13.11.
1
Solid. m.p. 167–168 ꢀC (hexane–chloroform). H NMR (400 MHz,
CDCl3) d 7.42–7.44 (m, 1H, H17), 7.50–7.54 (m, 1H, H5), 7.56–
7.60 (m, 2H, H16), 7.64–7.68 (m, 1H, H6), 7.76–7.78 (m, 4H, H4,
H7 and H15), 7.94 (d, JHH = 8.0 Hz, 1H, H9), 8.29 (d, JHH = 8.0 Hz,
1H, H8), 8.62 (s, 1H, H3), assignments to H5, H6 and H17 are inter-
changeable. 13C NMR (100 MHz, CDCl3) d 111.42 (C9), 121.04
(C11), 123.21 (C8), 123.64 (C15), 125.06 (C17), 127.44 (C4),
127.53 (C12), 127.75 (C5), 128.87 (C6), 128.91 (C7), 129.74 (C16),
129.82 (C10), 134.31 (C3), 137.33 (C13), 140.17 (C14), assignments
to C4–C7 are interchangeable. Anal. Calcd for C17H12N2: C, 83.58;
H, 4.95; N, 11.47. Found: C, 83.50; H, 4.91; N, 11.45.
Scheme 2. A catalytic cycle.
Commercially available organic and inorganic compounds were
used without further purification.
Acknowledgments
General Procedure for Copper(I) Salt-Catalyzed Synthesis of
1-Aryl-1H-Indazoles from 2-Bromobenzaldehydes and Aryl-
hydrazines (or their Hydrochlorides)
This research was supported by the Basic Science Research
Program through the National Research Foundation of Korea
(NRF) funded by the Ministry of Education, Science and Tech-
nology (2012–0002856) and Kyungpook National University
Research Fund, 2012.
To an organic reactor (Radleys Discovery Technologies) were added
2-bromobenzaldehyde 1 (1mmol), arylhydrazine (or arylhydrazine
hydrochloride) 2 (1mmol), copper salt (0.05 mmol), base (2mmol)
and solvent (3ml). The system was stirred at 110ꢀC for an appropri-
ate time. The reaction mixture was cooled to room temperature,
poured into water and extracted with ethyl acetate twice. The
combined organic layer was dried over Na2SO4 and concentrated
under reduced pressure. The crude mixture was purified by thin-
layer (silica gel 60 GF254, Merck) or column (silica gel 60, 70–230
mesh, Merck) chromatography (ethyl acetate–hexane mixture) to
give 1-aryl-1H-indazoles 2. Except for 3f, 3i and 3 m (Fig. 1), all pro-
ducts are known.[6,11,16,31,32]
References
[1] A. Schmidt, A. Beutler, B. Snovydovych, Eur. J. Org. Chem. 2008, 4073.
[2] J. P. Wolfe, S. Wagaw, J.-F. Marcoux, S. L. Buchwald, Acc. Chem. Res.
1998, 31, 805.
[3] J. F. Hartwig, Angew. Chem. Int. Ed. 1998, 37, –2046.
[4] B. H. Yang, S. L. Buchwald, J. Organomet. Chem. 1999, 576, 125.
[5] J. J. Song, N. K. Yee, Tetrahedron Lett. 2001, 42, 2937.
[6] A. Y. Lebedev, A. S. Khartulyari, A. Z. Voskoboynikov, J. Org. Chem.
2005, 70, 596.
[7] K. Inamoto, M. Katsuno, T. Yoshino, I. Suzuki, K. Hiroya, T. Sakamoto,
Chem. Lett. 2004, 33, 1026.
[8] K. Inamoto, M. Katsuno, T. Yoshino, Y. Arai, K. Hiroya, T. Sakamoto,
Tetrahedron 2007, 63, 2695.
[9] C. Dong, L. Xie, X. Mou, Y. Zhong, W. Su, Org. Biomol. Chem.
2010, 8, 4827.
[10] N. Suryakiran, P. Prabhakar, Y. Venkateswarlu, Chem. Lett. 2007,
36, 1370.
[11] C. S. Cho, D. K. Lim, N. H. Heo, T.-J. Kim, S. C. Shim, Chem. Commun.
2004, 104.
[12] R. Liu, Y. Zhu, L. Qin, S. Ji, Synth. Commun. 2008, 38, 249.
[13] T. Kylmälä, S. Udd, J. Tois, R. Franzén, Tetrahedron Lett. 2010, 51, 3613.
[14] C. Pabba, H. Wang, S. R. Mulligan, Z. Chen, T. M. Stark, B. T. Gregg,
Tetrahedron Lett. 2005, 46, 7553.
[15] D. Viña, E. del Olmo, J. L. López-Pérez, A. S. Feliciano, Org. Lett. 2007,
9, 525.
[16] M. Gao, X. Liu, X. Wang, Q. Cai, K. Ding, Chin. J. Chem. 2011, 29, 1199.
[17] S. Chandrasekhar, C. Narsihmulu, S. S. Sultana, N. R. Reddy, Org. Lett.
2002, 4, 4399.
[18] D. J. Heldebrant, P. G. Jessop, J. Am. Chem. Soc. 2003, 125, 5600.
[19] J.-H. Li, Q. M. Zhu, Y. Liang, D. Yang, J. Org. Chem. 2005, 70, 5347.
[20] J.-H. Li, W.-J. Liu, Y.-X. Xie, J. Org. Chem. 2005, 70, 5409.
[21] W. Mai, L. Gao, Synlett. 2006, 2553.
Oil. 1H NMR (400 MHz, CDCl3) d 7.24–7.28 (m, 1H, H14), 7.32–7.35
(m, 1H, H7), 7.45–7.49 (m, 2H, H5 and H6), 7.65–7.67 (m, 1H, H4),
7.76–7.83 (m, 3H, H11, H13 and H15), 8.22 (d, JHH = 0.8 Hz, 1H, H3).
13C NMR (100 MHz, CDCl3) d 110.51 (C7), 120.60 (C11), 121.72
(C15), 122.11 (C4), 122.89 (C5), 125.74 (C8), 126.76 (C13), 127.76
(C6), 130.66 (C14), 135.35 (C12), 136.26 (C3), 138.81 (C9), 141.47
(C10), assignments to C4 and C5 are interchangeable. Anal. Calcd
for C13H9ClN2: C, 68.28; H, 3.97; N, 12.25. Found: C, 68.25; H, 4.14;
N, 12.33.
Solid. m.p. 83–85 ꢀC (hexane–ethyl acetate). 1H NMR (400 MHz,
CDCl3) d 7.22–7.26 (m, 1H, H5), 7.30–7.35 (m, 2H, H13 and H14),
7.39–7.46 (m, 3H, H7, H12 and H15), 7.61–7.65 (m, 1H, H6),
7.80–7.82 (m, 1H, H4), 8.26 (d, JHH = 0.8 Hz, 1H, H3), assignments
to H5, H13 and H14 are interchangeable. 13C NMR (100 MHz,
CDCl3) d 110.73 (d, JCF = 5.1 Hz, C15), 117.17 (d, JCF = 19.6 Hz,
C12), 121.28 (C7), 121.74 (C4), 124.83 (C8), 125.08 (d, JCF = 3.6 Hz,
3f
3i
8
3m
[22] L. Wang, Y. Zhang, L. Liu, Y. Wang, J. Org. Chem. 2006, 71, 1284.
[23] S. Chandrasekhar, S. S. Sultana, S. R. Yaragorla, N. R. Reddy, Synthesis
2006, 839.
4
4
7
5
8
3
2
5
6
3
5
6
4
6
7
N
10
[24] C. S. Cho, W. X. Ren, S. C. Shim, Tetrahedron Lett. 2007, 48, 4665.
[25] C. S. Cho, W. X. Ren, J. Organomet. Chem. 2007, 692, 4182.
[26] C. S. Cho, W. X. Ren, N. S. Yoon, J. Mol. Cat. A: Chem. 2009, 299, 117.
[27] C. S. Cho, N. T. Tran, Catal. Commun. 2009, 11, 191.
[28] R. M. Coates, P. D. Senter, W. R. Baker, J. Org. Chem. 1982, 47, 3597.
[29] S. Paul, S. Samanta, J. K. Ray, Tetrahedron Lett. 2010, 51, 5604.
[30] A. Numata, Y. Kondo, T. Sakamoto, Synthesis 1999, 306.
[31] Y. Hari, Y. Shoji, T. Aoyama, Tetrahedron Lett. 2005, 46, 3771.
[32] Y.-C. Teo, F.-F. Yong, G. S. Lim, Tetrahedron Lett. 2011, 52, 7171.
N
2
12
N
9
3
9 N
1
1
7
11
10
10
F
11
12
N
15
2
8
15
11
Cl
N
13
1
9
14
14
14
12
15
16
15
16
13
13
17
Figure 1. Structures of products 3f, 3i and 3 m.
Appl. Organometal. Chem. 2013, 27, 224–227
Copyright © 2013 John Wiley & Sons, Ltd.
wileyonlinelibrary.com/journal/aoc