ChemComm
Communication
size of the N-acyl group in the series including 1, 9–11 has a structure factors for the BcNagZ–azepane complex are available in
modest effect with regard to inhibition of NagZ and OGA in that the Protein Data Bank (4MSS).
the Ki values increase with the bulk of this N-acyl group by
Notes and references
approximately 30-fold for NagZ and 200-fold for OGA. Inter-
estingly, branching of the aliphatic group, as in compound 12,
1 J. M. Thomson and R. A. Bonomo, Curr. Opin. Microbiol., 2005, 8, 518–524.
leads to a loss of inhibition against all these enzymes. As
previously observed for other inhibitors, increasing the bulk
of the N-acyl group beyond acetyl leads to a dramatic loss of
potency against HexA as seen for compound 9, which differs in
structure from 1 by only one methylene unit.
Because N-alkylation of iminosugars has often resulted in
significantly enhanced binding to glycoside hydrolases, including
to OGA, we speculated that N-alkylated azepanes 15 and 16 would
be more potent than 1 against these enzymes. Surprisingly,
however, we find that both these compounds abolished inhibition
against NagZ and impaired binding to OGA by a modest 2–30 fold
and to HexA by 4–15 fold.
Since some of these azepanes are good inhibitors of NagZ, in
particular 10, which retained fair potency and now showed some
(7-fold) selectivity for NagZ over both OGA and Hex, we decided to
explore their potential to block NagZ in bacteria and attenuate
inducible AmpC-mediated b-lactam resistance within a relevant
bacterial model representative of clinically occurring P. aeruginosa.
Spontaneous inactivation of dacB, which encodes the non-essential
penicillin-binding protein 4 (PBP4), is the most common cause
of AmpC hyper-production and high-level b-lactam antibiotic
2 P. A. Bradford, C. Urban, N. Mariano, S. J. Projan, J. J. Rahal and
K. Bush, Antimicrob. Agents Chemother., 1997, 41, 563–569.
3 V. Miriagou, L. S. Tzouvelekis, L. Villa, E. Lebessi, A. C. Vatopoulos,
A. Carattoli and E. Tzelepi, Antimicrob. Agents Chemother., 2004, 48,
3172–3174.
4 G. Barnaud, G. Arlet, C. Verdet, O. Gaillot, P. H. Lagrange and
A. Philippon, Antimicrob. Agents Chemother., 1998, 42, 2352–2358.
5 R. Nakano, R. Okamoto, Y. Nakano, K. Kaneko, N. Okitsu, Y. Hosaka
and M. Inoue, Antimicrob. Agents Chemother., 2004, 48, 1151–1158.
6 S. Sobhanifar, D. T. King and N. C. Strynadka, Curr. Opin. Struct.
Biol., 2013, DOI: 10.1016/j.sbi.2013.07.008.
7 Q. Cheng, H. Li, K. Merdek and J. T. Park, J. Bacteriol., 2000, 182,
4836–4840.
8 K. A. Stubbs, M. Balcewich, B. L. Mark and D. J. Vocadlo, J. Biol.
Chem., 2007, 282, 21382–21391.
9 T. Yamaguchi, B. Blazquez, D. Hesek, M. Lee, L. I. Llarrull,
B. Boggess, A. G. Oliver, J. F. Fisher and S. Mobashery, ACS Med.
Chem. Lett., 2012, 3, 238–242.
10 K. A. Stubbs, J.-P. Bacik, G. E. Perley-Robsertson, G. E. Whitworth,
T. M. Gloster, D. J. Vocadlo and B. L. Mark, ChemBioChem, 2013, 14,
1973–1981.
11 B. L. Cantarel, P. M. Coutinho, C. Rancurel, T. Bernard, V. Lombard
and B. Henrissat, Nucleic Acids Res., 2009, 37, D233–D238.
12 D. J. Vocadlo, C. Mayer, S. He and S. G. Withers, Biochemistry, 2000,
39, 117–126.
13 D. J. Vocadlo and S. G. Withers, Biochemistry, 2005, 44, 12809–12818.
14 S. Litzinger, S. Fischer, P. Polzer, K. Diederichs, W. Welte and
C. Mayer, J. Biol. Chem., 2010, 285, 35675–35684.
resistance in P. aeruginosa.32 We therefore tested whether 1 or 15 J. P. Bacik, G. E. Whitworth, K. A. Stubbs, D. J. Vocadlo and
10 could potentiate the efficacy of the b-lactam ceftazidime
B. L. Mark, Chem. Biol., 2012, 19, 1471–1482.
16 B. L. Mark, D. J. Vocadlo, S. Knapp, B. L. Triggs-Raine, S. G. Withers
against a dacB null mutant of P. aeruginosa (Table S3, ESI†).
and M. N. James, J. Biol. Chem., 2001, 276, 10330–10337.
Neither 1 nor 10 had any effect on bacterial growth on their 17 Y. He, M. S. Macauley, K. A. Stubbs, D. J. Vocadlo and G. J. Davies,
J. Am. Chem. Soc., 2010, 132, 1807–1809.
18 M. S. Macauley, G. E. Whitworth, A. W. Debowski, D. Chin and
own. However, use of 1 mM 1 halved the minimum inhibitory
concentration (MIC) of P. aeruginosa DdacB from 24 mg mlÀ1
D. J. Vocadlo, J. Biol. Chem., 2005, 280, 25313–25322.
ceftazidime in the absence of the inhibitor to 12 mg mlÀ1
.
,
19 D. L. Dong and G. W. Hart, J. Biol. Chem., 1994, 269, 19321–19330.
20 Y. Gao, L. Wells, F. I. Comer, G. J. Parker and G. W. Hart, J. Biol.
Chem., 2001, 276, 9838–9845.
21 M. D. Balcewich, K. A. Stubbs, Y. He, T. W. James, G. J. Davies,
D. J. Vocadlo and B. L. Mark, Protein Sci., 2009, 18, 1541–1551.
22 M. Horsch, L. Hoesch, A. Vasella and D. M. Rast, Eur. J. Biochem.,
1991, 197, 815–818.
23 M. Terinek and A. Vasella, Helv. Chim. Acta, 2005, 88, 10–22.
24 S. D. Orwig, Y. L. Tan, N. P. Grimster, Z. Yu, E. T. Powers, J. W. Kelly
and R. L. Lieberman, Biochemistry, 2011, 50, 10647–10657.
25 H. Li, F. Marcelo, C. Bello, P. Vogel, T. D. Butters, A. P. Rauter, Y. Zhang,
Azepane 10 led to a greater 3-fold reduction in MIC to 8 mg mlÀ1
despite this derivative being 18-fold less potent in vitro relative to
azepane 1, suggesting that its uptake or diffusion into the cells
must occur more easily. Notably, this value meets the susceptibility
breakpoint of the Clinical and Laboratory Standards Institute
(CLSI) for ceftazidime.
The synthetic accessibility of polyhydroxy azepanes, their
stability and their ability to suppress b-lactam resistance in the
´
M. Sollogoub and Y. Bleriot, Bioorg. Med. Chem., 2009, 17, 5598–5604.
´
clinically relevant P. aeruginosa dacB null mutant suggest that these 26 F. Marcelo, Y. He, S. A. Yuzwa, L. Nieto, J. Jimenez-Barbero,
´
M. Sollogoub, D. J. Vocadlo, G. D. Davies and Y. Bleriot, J. Am. Chem.
compounds could prove useful. The availability of a NagZ–azepane
complex will facilitate the design of improved NagZ azepane inhi-
bitors. Finally, the recent observation that inactivation of NagZ
also blocks the emergence of mutations giving rise to b-lactam
resistance33 makes NagZ an enzyme of high interest; its inhibition
Soc., 2009, 131, 5390–5392.
27 (a) K. Dax, B. Gaigg, V. Grassberger, B. Kolblinger and A. E. Stu¨tz,
´
J. Carbohydr. Chem., 1990, 9, 479–499; (b) S. Pino-Gonzalez,
C. Assiego and N. Onas, Targets Heterocycl. Syst., 2004, 8, 300–330.
28 X. H. Qian, F. MorisVaras and C. H. Wong, Bioorg. Med. Chem. Lett.,
1996, 6, 1117–1122.
˜
˜
should not only block antibiotic resistance but could also hinder 29 K. Martinez-Mayorga, J. L. Medina-Franco, S. Mari, F. J. Canada,
´
E. Rodriguez-Garcia, P. Vogel, H. Q. Li, Y. Bleriot, P. Sina¨y and
development of mutations leading to b-lactam resistance.
´
J. Jimenez-Barbero, Eur. J. Org. Chem., 2004, 4119–4129.
We thank Dr Silvia Cardona for B. cenocepacia genomic DNA.
YB thanks ‘‘Vaincre la Mucoviscidose’’ for support. DJV and BLM
thank the Canadian Institutes of Health Research (MOP 97818) and
Cystic Fibrosis Canada for funding. BLM holds a Manitoba Research
´
´
´
30 (a) M. Mondon, N. Fontelle, J. Desire, F. Lecornue, J. Guillard,
´
J. Marrot and Y. Bleriot, Org. Lett., 2012, 14, 870–873; (b) C. W. Ho,
S. D. Popat, T. W. Liu, K. C. Tsai, M. J. Ho, W. H. Chen, A. S. Yang and
C. H. Lin, ACS Chem. Biol., 2010, 5, 489–497.
31 T. M. Gloster and D. J. Vocadlo, Nat. Chem. Biol., 2012, 8, 683–694.
Chair in Structural Biology. DJV is a Canada Research Chair in 32 B. Moya, A. Dotsch, C. Juan, J. Blazquez, L. Zamorano, S. Haussler
and A. Oliver, PLoS Pathog., 2009, 5, e1000353.
33 L. Zamorano, T. M. Reeve, L. Deng, C. Juan, B. Moya, G. Cabot,
Chemical Glycobiology and an EWR Steacie Memorial Fellow. We
also thank V. Larmour, Z. Madden, and the staff of the Canadian
D. J. Vocadlo, B. L. Mark and A. Oliver, Antimicrob. Agents Chemother.,
Light Source (CLS) beamline 08ID-1 for assistance. Coordinates and
2010, 54, 3557–3563.
c
This journal is The Royal Society of Chemistry 2013
Chem. Commun., 2013, 49, 10983--10985 10985