Journal of the American Chemical Society
Page 4 of 5
2017, 139, 9598. (c) Shang, M.; Cao, M.; Wang, Q.; Wasa, M.
processes involving weakly acid- and/or base-sensitive substrates.
Studies aimed at achieving these objectives are in progress.
Enantioselective Direct Mannich-Type Reaction Catalyzed by Frustrated
Lewis Acid/Brønsted Base Complexes. Angew. Chem., Int. Ed. 2017, 56,
1333813526.
1
2
3
4
5
6
7
8
Author Information
(6) (a) Conia, J. M.; Perchec, P. L. The Thermal Cyclisation of Unsaturated
Carbonyl Compounds. Synthesis 1975, 1, 119. (b) Hack, D.; Blümel, M.;
Chauhan, P.; Philipps, A. R.; Enders, D. Catalytic Conia-ene and related reactions.
Chem. Soc. Rev. 2015, 44, 60596093.
(7) (a) Corkey, B. K.; Toste, F. D. Catalytic Enantioselective Conia-Ene
Reaction. J. Am. Chem. Soc. 2005, 127, 1716817169. (b) Matsuzawa, A.;
Mashiko, T.; Kumagai, N.; Shibasaki, M. La/Ag Heterobimetallic
Corresponding Author
*wasa@bc.edu
Notes
The authors declare no competing financial interest.
Acknowledgements. Financial support was provided by the NIH
(GM-128695) and Boston College. We thank Professor Amir H.
Hoveyda (Boston College) for helpful discussions. We also thank Dr.
Bo Li and Dr. Malte S. Mikus (Boston College) for X-ray
crystallographic analysis.
Cooperative Catalysis:
A Catalytic Asymmetric Conia-Ene Reaction.
Angew. Chem., Int. Ed. 2011, 123, 77587761. (c) Suzuki, S.; Tokunaga,
E.; Reddy, D. S.; Matsumoto, T.; Shiro, M.; Shibata, N. Enantioselective
5-endo-dig Carbocyclization of β-Ketoesters with Internal Alkynes
Employing a Four Component Catalyst System. Angew. Chem., Int. Ed.
2012, 51, 41314135.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Supporting Information Available: Experimental procedures and
spectral data for all new compounds (PDF). This material is available
(8) (a) Yang, T.; Ferrali, A.; Sladojevich, F.; Campbell, L.; Dixon, D. J.
Brønsted Base/Lewis Acid Cooperative Catalysis in the Enantioselective
Conia-Ene reaction. J. Am. Chem. Soc. 2009, 131, 91409141. (b) Shaw,
S.; White, J. D. A New Iron (III)–Salen Catalyst for Enantioselective
Conia-ene Carbocyclization. J. Am. Chem. Soc. 2014, 136, 1357813581.
(c) Blümel, M.; Hack, D.; Ronkartz, L.; Vermeeren, C.; Enders, D.
Development of an enantioselective amine–silver co-catalyzed Conia-ene
reaction. Chem. Commun. 2017, 53, 39563959.
References
(1) For selected reviews on enantioselective cooperative catalysis, see: (a)
Yamamoto, H.; Futatsugi, K. “Designer Acids”: Combined Acid Catalysis
for Asymmetric Synthesis. Angew. Chem., Int. Ed. 2005, 44, 19241942.
(b) Paull, D. H.; Abraham, C. J.; Scerba, M. T.; Alden-Danforth, E.;
Lectka, T. Bifunctional Asymmetric Catalysis: Cooperative Lewis
Acid/Base Systems. Acc. Chem. Res. 2008, 41, 655633. (c) Kobayashi,
S.; Mori, Y.; Fossey, J. S.; Salter, M. M. Catalytic Enantioselective
Formation of C−C Bonds by Addition to Imines and Hydrazones: A Ten-
Year Update. Chem. Rev. 2011, 111, 26262704. (d) Trost, B. M.; Bartlett,
M. J. ProPhenol-Catalyzed Asymmetric Additions by Spontaneously
Assembled Dinuclear Main Group Metal Complexes. Acc. Chem. Res.
2015, 48, 688701. (e) Shibasaki, M.; Kumagai, N. in Cooperative
Catalysis: Designing Efficient Catalysts for Synthesis, Peters, R., Eds.;
Wiley-VCH: New York, 2015; Chapter 1.
(2) For selected reviews on enantioselective non-covalent catalysis, see: (a)
Hashimoto, T.; Maruoka, K. Recent Development and Application of
Chiral Phase-Transfer Catalysts. Chem. Rev. 2007, 107, 56565682. (b)
Ooi, T.; Maruoka, K. Recent Advances in Asymmetric Phase-Transfer
Catalysis. Angew. Chem., Int. Ed. 2007, 46, 42224266. (c) Adair, G.;
Mukherjee, S.; List, B. TRIP - A powerful Brønsted acid catalyst for
asymmetric synthesis. Aldrichimica Acta 2008, 41, 3139. (d) Zhang, Z.;
Schreiner, P. R. (Thio)urea organocatalysis—What can be learnt from
anion recognition? Chem. Soc. Rev. 2009, 38, 11871198. (e) Phipps, R.
J.; Hamilton, G. L.; Toste, F. D. The progression of chiral anions from
concepts to applications in asymmetric catalysis. Nat. Chem. 2012, 4,
603614. (f) Brak, K.; Jacobsen, E. N. Asymmetric Ion-Pairing Catalysis.
Angew. Chem., Int. Ed. 2013, 52, 534561. (g) Neel, A. J.; Hilton, M. J.;
Sigman, M. S.; Toste, F. D. Exploiting non-covalent π interactions for
catalyst design. Nature 2017, 543, 637646.
(3) For reviews of frustrated Lewis pair chemistry, see: (a) Frustrated Lewis
Pairs I; Stephan, D. W.; Erker, G. Eds.; Springer Press: New York, 2013;
Vol. 332. (b) Frustrated Lewis Pairs II: Expanding the Scope; Erker, G.;
Stephan, D. W. Eds.; Springer: Berlin, 2013; Vol. 334. (c) Ashley, A. E.;
O'Hare, D. FLP-Mediated Activations and Reductions of CO2 and CO. Top.
Curr. Chem. 2013, 334, 191218. (d) Feng, X.; Du, H. Metal-free
asymmetric hydrogenation and hydrosilylation catalyzed by frustrated
Lewis pairs. Tetrahedron Lett. 2014, 55, 69596964. (e) Stephan, D. W.;
Erker, G. Frustrated Lewis Pair Chemistry: Development and Perspectives.
Angew. Chem., Int. Ed. 2015, 54, 64006441. (f) Stephan, D. W.
Frustrated Lewis Pairs J. Am. Chem. Soc. 2015, 137, 1001810032. (g)
Oestreich, M.; Hermeke, J.; Mohr, J. A unified survey of Si–H and H–H
bond activation catalysed by electron-deficient boranes. Chem. Soc. Rev.
2015, 44, 22022220. (h) Stephan, D. W. The broadening reach of
frustrated Lewis pair chemistry. Science 2016, 354, aaf7229.
(4) For activation of alkynes by B(C6F5)3, see: (a) Dureen, M. A.; Brown, C.
C.; Stephan, D. W. Addition of Enamines or Pyrroles and B(C6F5)3
“Frustrated Lewis Pairs” to Alkynes. Organometallics 2010, 29,
64226432. (b) Hansmann, M. M.; Melen, R. L.; Rominger, F.; Hashmi, A.
S. K.; Stephan, D. W. Activation of Alkynes with B(C6F5)3–Boron
Allylation Reagents Derived from Propargyl Esters. J. Am. Chem. Soc.
2014, 136, 777782.
(9) For selected examples on application of Conia-ene-type reaction, see: (a)
Staben, S. T.; Kennedy-Smith, J. J.; Huang, D.; Corkey, B. K.; LaLonde,
R. L.; Toste, F. D. Gold (I)-Catalyzed Cyclizations of Silyl Enol Ethers:
Application to the Synthesis of (+)-Lycopladine A. Angew. Chem., Int. Ed.
2006, 45, 59915994. (b) Tsuji, H.; Yamagata, K. I.; Itoh, Y.; Endo, K.;
Nakamura, M.; Nakamura, E. Indium-Catalyzed Cycloisomerization of ω-
Alkynyl-β-ketoesters into Six- to Fifteen-Membered Rings. Angew. Chem.,
Int. Ed. 2007, 46, 80608062. (c) Takahashi, K.; Midori, M.; Kawano, K.;
Ishihara, J.; Hatakeyama, S. Entry to Heterocycles Based on Indium-
Catalyzed Conia-Ene Reactions: Asymmetric Synthesis of (−)-
Salinosporamide A. Angew. Chem., Int. Ed. 2008, 47, 62446246. (d) Liu,
X.; Lee, C. S. Total synthesis of (−)-Teucvidin. Org. Lett. 2012, 14,
28862889. (e) Huwyler, N.; Carreira, E. M. Total Synthesis and
Stereochemical Revision of the Chlorinated Sesquiterpene (±)-Gomerone
C. Angew. Chem., Int. Ed. 2012, 51, 1306613069. (f) Persich, P.;
Llaveria, J.; Lhermet, R.; de Haro, T.; Stade, R.; Kondoh, A.; Fürstner, A.
Increasing the Structural Span of Alkyne Metathesis. Chem. Eur. J. 2013,
19, 1304713058. (g) Xiong, X.; Li, Y.; Lu, Z.; Wan, M.; Deng, J.; Wu,
S.; Shao, H.; Li, A. Synthesis of the 6, 6, 5, 7-tetracyclic core of
daphnilongeranin B. Chem. Commun. 2014, 50, 52945297. (h)
Hartrampf, F. W.; Furukawa, T.; Trauner, D.
A Conia-Ene-Type
Cyclization under Basic Conditions Enables an Efficient Synthesis of (−)-
Lycoposerramine R. Angew. Chem., Int. Ed. 2017, 56, 893896. (i) Ye,
Q.; Qu, P.; Snyder, S. A. Total Syntheses of Scaparvins B, C, and D
Enabled by a Key C–H Functionalization. J. Am. Chem. Soc. 2017, 139,
1842818431. (j) Hartrampf, F. W.; Trauner, D. Total Synthesis of
Lycopladine A and Carinatine A via a Base-Mediated Carbocyclization. J.
Org. Chem. 2017, 82, 82068212.
(10)(a) Corkey, B. K.; Toste, F. D. Palladium-Catalyzed Enantioselective
Cyclization of Silyloxy-1, 6-Enynes. J. Am. Chem. Soc. 2007, 129,
27642765. (b) Brazeau, J. F.; Zhang, S.; Colomer, I.; Corkey, B. K.;
Toste, F. D. Enantioselective Cyclizations of Silyloxyenynes Catalyzed by
Cationic Metal Phosphine Complexes. J. Am. Chem. Soc. 2012, 134,
27422749.
(11) For a comprehensive evaluation of Fe, Cu, Ag, Mg, In, Yb, Au-based
Lewis acids and their complexes with various chiral ligands, see the SI.
(12) For the determination of absolute configuration for product 2a, see the SI.
The absolute configuration for the other products was assigned in analogy.
(13) For the data involving evaluation of achiral Lewis acid co-catalysts, see
the SI.
(14) (a) Thorhauge, J.; Roberson, M.; Hazell, R. G.; Jørgensen, K. A. On the
Intermediates
Enantioselective
in
Chiral
Bis(oxazoline)copper(II)-Catalyzed
and Theoretical
Reactions—Experimental
Investigations. Chem. Eur. J. 2002, 8, 18881898. (b) Desimoni, G.; Faita,
G.; Jørgensen, K. A. C2-Symmetric Chiral Bis(oxazoline) Ligands in
Asymmetric Catalysis. Chem. Rev. 2011, 111, 284437.
(15) For the experimental results involving the enantioselective cyclization of
1-phenylhex-5-yn-1-one, see the SI.
(5) (a) Chan, J. Z.; Yao, W.; Hastings, B. T.; Lok, C. K.; Wasa, M. Direct
Mannich-Type Reactions Promoted by Frustrated Lewis Acid/Brønsted
Base Catalysts. Angew. Chem., Int. Ed. 2016, 55, 1387713881. (b) Shang,
M.; Wang, X.; Koo, S. M.; Youn, J.; Chan, J. Z.; Yao, W.; Hastings, B. T.;
Wasa, M. Frustrated Lewis Acid/Brønsted Base Catalysts for Direct
Enantioselective α-Amination of Carbonyl Compounds. J. Am. Chem. Soc.
ACS Paragon Plus Environment