Article
Crystal Growth & Design, Vol. 10, No. 12, 2010 5295
50928201, 50972127, and 51010002), Grant CHE 0718281
from the National Science Foundation, and Grant AX-1730
from the Welch Foundation (B.C.).
of luminescent metal-organic framework materials based on zinc/
lead isophthalates. Inorg. Chem. 2008, 47 (18), 8286–8293.
(19) Xiong, R. G.; Xue, X.; Zhao, H.; You, X. Z.; Abrahams, B. F.;
Xue, Z. L. Novel, acentric metal-organic coordination polymers
from hydrothermal reactions involving in situ ligand synthesis.
Angew. Chem., Int. Ed. 2002, 41 (20), 3800–3803.
(20) Liang, L. L.; Ren, S. B.; Zhang, J.; Li, Y. Z.; Du, H. B.; Zeng, X.
Two unprecedented NLO-active coordination polymers con-
structed by a semi-rigid tetrahedral linker. Dalton Trans. 2010,
33, 7723.
Supporting Information Available: X-ray data of 1 and 2 in CIF
format and figures of asymmetric units. This material is available
References
(21) Zhong, D. C.; Meng, M.; Zhu, J.; Yang, G. Y.; Lu, T. B. A highly-
connected acentric organic-inorganic hybrid material with unique
3D inorganic and 3D organic connectivity. Chem. Commun. 2010,
24, 4354–4356.
(1) Evans, O. R.; Lin, W. B. Crystal engineering of NLO materials
based on metal-organic coordination networks. Acc. Chem. Res.
2002, 35 (7), 511–522.
(2) Evans, O. R.; Lin, W. B. Rational design of nonlinear optical
materials based on 2D coordination networks. Chem. Mater. 2001,
13 (9), 3009–3017.
(22) Lin, W. B.; Wang, Z. Y.; Ma, L. A novel octupolar metal-organic
NLO material based on a chiral 2D coordination network. J. Am.
Chem. Soc. 1999, 121 (48), 11249–11250.
(3) Evans, O. R.; Lin, W. B. Crystal engineering of nonlinear optical
materials based on interpenetrated diamondoid coordination net-
works. Chem. Mater. 2001, 13 (8), 2705–2712.
(4) Du, M.; Guo, Y. M.; Chen, S. T.; Bu, X. H.; Batten, S. R.; Ribas, J.;
Kitagawa, S. Preparation of acentric porous coordination frame-
works from an interpenetrated diamondoid array through anion-
exchange procedures: Crystal structures and properties. Inorg.
Chem. 2004, 43 (4), 1287–1293.
(5) Liu, Y.; Xuan, W. M.; Zhang, H.; Cui, Y. Chirality- and Threefold-
Symmetry-Directed Assembly of Homochiral Octupolar Metal-
Organoboron Frameworks. Inorg. Chem. 2009, 48 (21), 10018–
10023.
(6) Evans, O. R.; Xiong, R. G.; Wang, Z. Y.; Wong, G. K.; Lin, W. B.
Crystal engineering of acentric diamondoid metal-organic coordi-
nation networks. Angew. Chem., Int. Ed. 1999, 38 (4), 536–538.
(7) Fu, D. W.; Zhang, W.; Xiong, R. G. The first metal-organic
framework (MOF) of Imazethapyr and its SHG, piezoelectric
and ferroelectric properties. Dalton Trans. 2008, 30, 3946–3948.
(8) Moulton, B.; Zaworotko, M. J. From Molecules to Crystal En-
gineering: Supramolecular Isomerism and Polymorphism in Net-
work Solids. Chem. Rev. 2001, 101 (6), 1629–1658.
(23) Kepert, C. J.; Prior, T. J.; Rosseinsky, M. J. A versatile family of
interconvertible microporous chiral molecular frameworks: The
first example of ligand control of network chirality. J. Am. Chem.
Soc. 2000, 122 (21), 5158–5168.
(24) Wampler, R. D.; Begue, N. J.; Simpson, G. J. Molecular design
strategies for optimizing the nonlinear optical properties of chiral
crystals. Cryst. Growth Des. 2008, 8 (8), 2589–2594.
(25) Zhang, G.; Yao, S. Y.; Guo, D. W.; Tian, Y. Q. Noncentrosym-
metric and homochiral metal-organic frameworks of (S)-2-(1H-
imidazole-1-yl) propionic acid. Cryst. Growth Des. 2010, 10 (5),
2355–2359.
(26) Liu, Y.; Xu, X.; Zheng, F. K.; Cui, Y. Chiral octupolar metal-
oraganoboran NLO frameworks with (14,3) topology. Angew.
Chem., Int. Ed. 2008, 47 (24), 4538–4541.
(27) Liu, Y.; Li, G.; Li, X.; Cui, Y. Cation-dependent non linear optical
behavior in an octupolar 3D anionic metal-organic open frame-
work. Angew. Chem., Int. Ed. 2007, 46 (33), 6301–6304.
(28) Chen, H. F.; Guo, G. C.; Wang, M. S.; Xu, G.; Zou, W. Q.; Guo,
S. P.; Wu, M. F.; Huang, J. S. Spontaneous chiral resolution,
nonlinear optical and luminescence of eight-coordinate lanthanide-
(III) complexes. Dalton Trans. 2009, 46, 10166–10168.
(9) Zhang, J. J.; Wojtas, L.; Larsen, R. W.; Eddaoudi, M.; Zaworotko,
M. J. Temperature and Concentration Control over Interpenetra-
tion in a Metal-Organic Material. J. Am. Chem. Soc. 2009, 131 (47),
17040–17041.
(10) Xu, G.; Li, Y.; Zhou, W. W.; Wang, G. J.; Long, X. F.; Cai, L. Z.;
Wang, M. S.; Guo, G. C.; Huang, J. S.; Bator, G.; Jakubas, R. A
ferroelectric inorganic-organic hybrid based on NLO-phore stil-
bazolium. J. Mater. Chem. 2009, 15, 2179–2183.
(11) Zou, J. P.; Zhou, G. W.; Zhang, X.; Wang, M. S.; Lu, Y. B.; Zhou,
W. W.; Zhang, Z. J.; Guo, G. C.; Huang, J. S. A novel heterometal-
organic coordination polymer with chelidamic acid: Nonlinear
optical and magnetic properties. CrystEngComm 2009, 6, 972–
974.
(12) Zhou, Y. F.; Yuan, D. Q.; Wu, B. L.; Wang, R. H.; Hong, M. C.
Design of metal-organic NLO materials: Complexes derived from
pyridine-3,4-dicarboxylate. New J. Chem. 2004, 28 (12), 1590–1594.
(13) Zang, S. Q.; Su, Y.; Li, Y. Z.; Ni, Z. P.; Meng, Q. J. Assemblies of a
new flexible multicarboxylate ligand and d(10) metal centers
toward the construction of homochiral helical coordination poly-
mers: Structures, luminescence, and NLO-active properties. Inorg.
Chem. 2006, 45 (1), 174–180.
(14) Zhang, R. B.; Zhang, J.; Li, Z. J.; Qin, Y. Y.; Cheng, J. K.; Yao,
Y. G. Controlled generation of acentric and homochiral coordina-
tion compounds from a versatile asymmetric ligand 4-(1H-1,2,4-
triazol-3-yl)-4H-1,2,4-triazole. Chem. Commun. 2008, 35, 4159–
4161.
(15) Li, Y.; Xu, G.; Zou, W. O.; Wang, N. S.; Zheng, F. K.; Wu, M. F.;
Zeng, H. Y.; Guo, G. C.; Huang, J. S. A novel metal-organic
network with high thermal stability: Nonlinear optical and photo-
luminescent properties. Inorg. Chem. 2008, 47 (18), 7945–7947.
(16) Wang, Y. T.; Fan, H. H.; Wang, H. Z.; Chen, X. M. A solvother-
mally in situ generated mixed-ligand approach for NLO-active
metal-organic framework materials. Inorg. Chem. 2005, 44 (12),
4148–4150.
(29) Xiao, D. R.; Wang, E. B.; An, H. Y.; Li, Y. G.; Su, Z. M.; Sun, C. Y.
A bridge between pillared-layer and helical structures: A series of
three-dimensional pillared coordination polymers with multiform
helical chains. Chem.;Eur. J. 2006, 12 (25), 6528–6541.
(30) He, C.; Zhao, Y. G.; Guo, D.; Lin, Z. H.; Duan, C. Y. Chirality
transfer through helical motifs in coordination compounds. Eur.
J. Inorg. Chem. 2007, 22, 3451–3463.
(31) Yang, J.; Li, G. D.; Cao, J. J.; Yue, Q.; Li, G. H.; Chen, J. S.
Structural variation from 1D to 3D: Effects of ligands and solvents
on the construction of lead(II)-organic coordination polymers.
Chem.;Eur. J. 2007, 13 (11), 3248–3261.
(32) Lu, W. G.; Gu, J. Z.; Jiang, L.; Tan, M. Y.; Lu, T. B. Achiral and
chiral coordination polymers containing helical chains: The chi-
rality transfer between helical chains. Cryst. Growth Des. 2008,
8 (1), 192–199.
(33) Ou, G. C.; Jiang, L.; Feng, X. L.; Lu, T. B. SpontaneousResolution
of a Racemic Nickel(II) Complex and Helicity Induction via
Hydrogen Bonding: The Effect of Chiral Building Blocks on the
Helicity of One-Dimensional Chains. Inorg. Chem. 2008, 47 (7),
2710–2718.
(34) Zheng, X. D.; Jiang, L.; Feng, X. L.; Lu, T. B. Constructions of 1D
helical chains with left-handed/right-handed helicity: A correlation
between the helicity of 1D chains and the chirality of building
blocks. Dalton Trans. 2009, 34, 6802–6808.
(35) Huang, X. H.; Sheng, T. L.; Xiang, S. C.; Fu, R. B.; Hu, S. M.; Li,
Y. M.; Wu, X. T. {[Cu(mtz)]3(CuI)}n: An Unprecedented Non-
interpenetrated (123)(122 14)3 Network with Triple-Stranded He-
3
lices. Inorg. Chem. 2007, 46 (2), 497–500.
(36) Zhang, J.; Chen, S. M.; Zingiryan, A.; Bu, X. H. Integrated
Molecular Chirality, Absolute Helicity, and Intrinsic Chiral To-
pology in Three-Dimensional Open-Framework Materials. J. Am.
Chem. Soc. 2008, 130 (51), 17246–17247.
(37) Zhang, J.; Bu, X. H. Absolute helicity induction in three-dimen-
sional homochiral frameworks. Chem. Commun. 2009, 2, 206–208.
(38) Han, L.; Hong, M. C.; Wang, R. H.; Luo, J. H.; Lin, Z. Z.; Yuan,
D. Q. A novel nonlinear optically active tubular coordina-
tion network based on two distinct homo-chiral helices. Chem.
Commun. 2003, 20, 2580–2581.
(17) Guo, Z. G.; Cao, R.; Wang, X.; Li, H. F.; Yuan, W. B.; Wang, G. J.;
Wu, H. H.; Li, J. A Multifunctional 3D Ferroelectric and NLO-
Active Porous Metal-Organic Framework. J. Am. Chem. Soc.
2009, 131 (20), 6894–6895.
(18) Zhang, L.; Qin, Y. Y.; Li, Z. J.; Lin, Q. P.; Cheng, J. K.; Zhang, J.;
Yao, Y. G. Topology analysis and nonlinear-optical-active properties
(39) Anthony, S. P.; Radhakrishnan, T. P. Helical and network co-
ordination polymers based on a novel C-2-symmetric ligand: SHG