1770
J . Org. Chem. 1999, 64, 1770-1771
Initial work by Grubbs10 established the viability of this
ring closure with simple substrates. Later work by Nico-
laou11 focused on the one-pot preparation of cyclic enol ethers
directly from esters using stoichiometric titanium reagents.12
More recently, the preparation of cyclic enol ethers from
olefinic acyclic enol ethers using a two-step protocol was re-
ported.13,14 While this work was underway, Rainier15 re-
ported an olefin-enolether metathesis-based method of fus-
ing glycals onto existing carbohydrates. In addition, scien-
tists at Merck Frosst16 found that some carbohydrate-derived
unsubstituted (on the enol ether olefin) enol ethers can
undergo ring-closing metathesis with the use of 2b to give
glycals.
In this paper, we outline our preliminary results for the
synthesis of C-1 glycals by an olefin-enol ether metathetical
coupling approach. To have the structural diversity needed
to prepare a variety of C-glycoside compounds, we needed a
general approach to the sugar-based coupling partner 3.
Accordingly, treatment of 3,4,6-tri-O-benzyl-D-glucal (10)
with ozone in dichloromethane at low temperature followed
by reductive workup and deprotection of the formyl group
gave lactol 12 as a mixture of inseparable anomers (91%).
Wittig reaction, along ample literature precedent,8 furnished
olefins 13 as a 1:1 mixture (73%, 1H NMR, 500 MHz) of
partially separable isomers. Acetylation then provided 15
in quantitative yield demonstrating that diversity in the
sugar portion is possible.17 We employ commercially avail-
able 2,3,5-tri-O-benzyl-â-D-arabinofuranoside (12â)18 as our
starting material for the Wittig olefination19 reaction to
prepare hydroxy-olefin 14.
P r ep a r a tion of C-1 Glyca ls via Olefin
Meta th esis. A Con ver gen t a n d F lexible
Ap p r oa ch to C-Glycosid e Syn th esis1
Daniel Calimente and Maarten H. D. Postema*
Department of Chemistry, Wayne State University,
Detroit, Michigan 48202
Received November 25, 1998
The recent interest in olefin metathesis is attested by the
abundance of work that has appeared dealing with this new2
and exciting approach to carbon-carbon bond formation.3
This is largely due to the availability of effective catalyst
systems such as 14 and 25 used to carry out this mild6 and
selective transformation.
Metathesis chemistry has been applied to many types of
systems,3 and its use has started to find application in the
carbohydrate field.7 C-Glycosides,8 compounds in which the
glycosidic oxygen atom has been replaced by a carbon-based
group,9 are biologically relevant compounds that have
potential as enzyme inhibitors and stable sugar mimics.
Conceptually, we felt that olefin metathesis and C-glycoside
chemistry would mesh together quite well to provide a
convergent and flexible route to a wide variety of C-1 glycals
(eq 2). The sequence begins with a dehydrative coupling of
The ester precursors, except for 16a (Ac2O, 4-DMAP), were
prepared by DCC-mediated coupling of 14 with the ap-
an appropriate olefin alcohol 3 with the requisite acid 4 to
give ester 5. Ring-closing metathesis, either via a one- or
two-pot method, is then expected to give the C-1 glycal 7.
Compound 7 will then serve as an intermediate to both the
â-C-glycosides with the general structures 8 and 9 available
from 7 by hydroboration (followed by oxidative workup) or
stereoselective reduction, respectively.
(5) (a) Fu, G. C.; Nguyen, S. T.; Grubbs, R. H. J . Am. Chem. Soc. 1993,
115, 9856-9857. (b) Nguyen, S. T.; J ohnson, L. K.; Grubbs, R. H.; Ziller, J .
W. J . Am. Chem. Soc. 1992, 114, 3974-3975. (c) Nguyen, S. T.; Grubbs, R.
H.; Ziller, J . W. J . Am. Chem. Soc. 1993, 115, 9858-9859. (d) Schwab, P.;
France, M. B.; Ziller, J . W.; Grubbs, R. H. Angew. Chem., Int. Ed. Engl.
1995, 34, 2039-2041.
(6) For newly developed ruthenium-based metathesis catalysts, see: (a)
Weskamp, T.; Schattenmann, W. C.; Spiegler, M.; Herrmann, W. A. Angew.
Chem., Int. Ed. Engl. 1998, 37, 2490-2493. (b) Wolf, J .; Stu¨er, W.;
Gru¨nwald, C.; Werner, H.; Schwab, P.; Schulz, M. Angew. Chem., Int. Ed.
Engl. 1998, 37, 1124-1126.
(7) For some recent examples of the application of the olefin metathesis
reaction to carbohydrates, see: (a) Sturino, C. F.; Wong, J . C. Y. Tetrahedron
Lett. 1998 39, 9623-9626. (b) El Sukkari, H.; Gesson, J . P.; Renoux, B.
Tetrahedron Lett. 1998, 39, 4043-4046. (c) O’Leary, D. J .; Blackwell, H.
E.; Washenfelder, R. A.; Grubbs, R. H. Tetrahedron Lett. 1998, 39, 7427-
7430.
(1) Dedicated to the memory of Professor Michael G. Hogben, Concordia
University, Montreal.
(2) (a) Evans, P. A.; Murthy, V. S. J . Org. Chem. 1998, 63, 6768-6769.
(b) Limanto, J .; Snapper, M. L. J . Org. Chem. 1998, 63, 6440-6441. (c) La,
D. S.; Alexander, J . B.; Cefalo, D. R.; Graf, D. D.; Hoveyda, A. H.; Schrock,
R. R. J . Am. Chem. Soc. 1998, 120, 9720-9721. (d) Renaud, J .; Ouellet, S.
G. J . Am. Chem. Soc. 1998, 120, 7995-7996. (e) Zuercher, W. J .; Scholl,
M.; Grubbs, R. H. J . Org. Chem. 1998, 63, 4291-4298.
(3) For recent reviews on olefin metathesis chemistry, see: (a) Grubbs,
R. H.; Chang, S. Tetrahedron 1998, 54, 4413-4450. (b) Ivin, K. J . J . Mol.
Catal. A-Chem. 1998, 133, 1-16. (c) Randall, M. L.; Snapper, M. L. J . Mol.
Catal. A-Chem. 1998, 133, 29-40. (d) Armstrong, S. K. J . Chem. Soc.,
Perkin Trans. 1 1998, 371-388. (e) Schuster, M.; Blechert, S. Angew. Chem.,
Int. Ed. Engl. 1997, 36, 2036-2056. (f) Fu¨rstner, A. Top. Catal. 1997, 4,
285-299.
(8) For reviews on C-glycoside synthesis, see: (a) Du, Y.; Lindhart, R. J .
Tetrahedron 1998, 54, 9913-9959. (b) Togo, H.; He, W.; Waki, Y.; Yokoyama,
M. Synlett 1998, 700-717. (c) Postema, M. H. D.C-Glycoside Synthesis, 1st
ed.; CRC Press: Boca Raton, 1995. (d) Levy, D. E.; Tang, C. The Chemistry
of C-Glycosides, 1st ed.; Elsevier Science: Oxford, 1995; Vol. 13.
(9) For some recent examples of C-glycoside synthesis see: (a) Wamhoff,
H.; Warnecke, H.; Sohar, P.; Csampai, A. Synlett 1998, 1193-1194. (b) Polat,
T.; Du, Y.; Linhardt, R. J . Synlett 1998, 1195-1196. (c) Buffet, M. F.; Dixon,
D. J .; Ley, S. V.; Tate, E. W. Synlett 1998, 1091-1092. (d) Belica, P. S.;
Franck, R. W. Tetrahedron Lett. 1998, 39, 8225-8228.
(4) (a) Schrock, R. R.; Murdzek, J . S.; Bazan, G. C.; Robbins, J .; DiMare,
M.; O’Regan, M. J . Am. Chem. Soc. 1990, 112, 3875-3886. (b) Feldman, J .;
Murdzek, J . S.; Davis, W. M.; Schrock, R. R. Organometallics 1989, 8, 2260-
2265.
(10) Fujimura, O.; Fu, G. C.; Grubbs, R. H. J . Org. Chem. 1994, 59, 4029-
4031.
10.1021/jo982331o CCC: $18.00 © 1999 American Chemical Society
Published on Web 02/20/1999