ACS Medicinal Chemistry Letters
Letter
(3) Milligan, G. G protein-coupled receptor hetero-dimerization:
contribution to pharmacology and function. Br. J. Pharmacol. 2009,
158, 5−14.
(23) Hervieu, G. J.; Cluderay, J. E.; Harrison, D. C.; Roberts, J. C.;
Leslie, R. A. Gene expression and protein distribution of the orexin-1
receptor in the rat brain and spinal cord. Neuroscience 2001, 103, 777−
797.
(4) Hiller, C.; Kuhhorn, J.; Gmeiner, P.; Class, A. G-protein-coupled
receptor (GPCR) dimers and bivalent ligands. J. Med. Chem. 2013, 56,
6542−6559.
(24) Cota, D.; Marsicano, G.; Tschop, M.; Grubler, Y.; Flachskamm,
C.; Schubert, M.; Auer, D.; Yassouridis, A.; Thone-Reineke, C.;
Ortmann, S.; Tomassoni, F.; Cervino, C.; Nisoli, E.; Linthorst, A. C.;
Pasquali, R.; Lutz, B.; Stalla, G. K.; Pagotto, U. The endogenous
cannabinoid system affects energy balance via central orexigenic drive
and peripheral lipogenesis. J. Clin. Invest. 2003, 112, 423−431.
(25) Crespo, I.; Gomez de Heras, R.; Rodriguez de Fonseca, F.;
Navarro, M. Pretreatment with subeffective doses of rimonabant
attenuates orexigenic actions of orexin A-hypocretin 1. Neuro-
pharmacology 2008, 54, 219−225.
(26) Gupta, A.; Mulder, J.; Gomes, I.; Rozenfeld, R.; Bushlin, I.; Ong,
E.; Lim, M.; Maillet, E.; Junek, M.; Cahill, C. M.; Harkany, T.; Devi, L.
A. Increased abundance of opioid receptor heteromers after chronic
morphine administration. Sci. Signaling 2010, 3, ra54.
(27) Albizu, L.; Cottet, M.; Kralikova, M.; Stoev, S.; Seyer, R.; Brabet,
I.; Roux, T.; Bazin, H.; Bourrier, E.; Lamarque, L.; Breton, C.; Rives,
M. L.; Newman, A.; Javitch, J.; Trinquet, E.; Manning, M.; Pin, J. P.;
Mouillac, B.; Durroux, T. Time-resolved FRET between GPCR
ligands reveals oligomers in native tissues. Nat. Chem. Biol. 2010, 6,
587−594.
(28) Morphy, R.; Rankovic, Z. Designed multiple ligands. An
emerging drug discovery paradigm. J. Med. Chem. 2005, 48, 6523−
6543.
(5) George, S. R.; O’Dowd, B. F.; Lee, S. P. G-protein-coupled
receptor oligomerization and its potential for drug discovery. Nat. Rev.
Drug. Discovery 2002, 1, 808−820.
(6) Minneman, K. P. Heterodimerization and surface localization of
G protein coupled receptors. Biochem. Pharmacol. 2007, 73, 1043−
1050.
(7) Milligan, G. G-protein-coupled receptor heterodimers: pharma-
cology, function and relevance to drug discovery. Drug. Discovery
Today 2006, 11, 541−549.
(8) Kearn, C. S.; Blake-Palmer, K.; Daniel, E.; Mackie, K.; Glass, M.
Concurrent stimulation of cannabinoid CB1 and dopamine D2
receptors enhances heterodimer formation: a mechanism for receptor
cross-talk? Mol. Pharmacol. 2005, 67, 1697−1704.
(9) Mackie, K. Cannabinoid receptor homo- and heterodimerization.
Life Sci. 2005, 77, 1667−1673.
(10) Wager-Miller, J.; Westenbroek, R.; Mackie, K. Dimerization of G
protein-coupled receptors: CB1 cannabinoid receptors as an example.
Chem. Phys. Lipids 2002, 121, 83−89.
(11) Schoffelmeer, A. N.; Hogenboom, F.; Wardeh, G.; De Vries, T.
J. Interactions between CB1 cannabinoid and mu opioid receptors
mediating inhibition of neurotransmitter release in rat nucleus
accumbens core. Neuropharmacology 2006, 51, 773−781.
(12) Cvejic, S.; Devi, L. A. Dimerization of the delta opioid receptor:
implication for a role in receptor internalization. J. Biol. Chem. 1997,
272, 26959−26964.
(13) Filizola, M.; Weinstein, H. Structural models for dimerization of
G-protein coupled receptors: the opioid receptor homodimers.
Biopolymers 2002, 66, 317−325.
(14) Garzon, J.; Juarros, J. L.; Castro, M. A.; Sanchez-Blazquez, P.
Antibodies to the cloned mu-opioid receptor detect various molecular
weight forms in areas of mouse brain. Mol. Pharmacol. 1995, 47, 738−
744.
(15) Bhushan, R. G.; Sharma, S. K.; Xie, Z.; Daniels, D. J.;
Portoghese, P. S. A bivalent ligand (KDN-21) reveals spinal delta and
kappa opioid receptors are organized as heterodimers that give rise to
delta(1) and kappa(2) phenotypes. Selective targeting of delta-kappa
heterodimers. J. Med. Chem. 2004, 47, 2969−2972.
(16) Gomes, I.; Gupta, A.; Filipovska, J.; Szeto, H. H.; Pintar, J. E.;
Devi, L. A. A role for heterodimerization of mu and delta opiate
receptors in enhancing morphine analgesia. Proc. Natl. Acad. Sci. U.S.A.
2004, 101, 5135−5139.
(17) Kearn, C. S.; Blake-Palmer, K.; Daniel, E.; Mackie, K.; Glass, M.
Concurrent stimulation of cannabinoid CB1 and dopamine D2
receptors enhances heterodimer formation: a mechanism for receptor
cross-talk? Mol. Pharmacol. 2005, 67, 1697−1704.
(18) Ng, G. Y.; O’Dowd, B. F.; Lee, S. P.; Chung, H. T.; Brann, M.
R.; Seeman, P.; George, S. R. Dopamine D2 receptor dimers and
receptor-blocking peptides. Biochem. Biophys. Res. Commun. 1996, 227,
200−204.
(29) Portoghese, P. S. From models to molecules: opioid receptor
dimers, bivalent ligands, and selective opioid receptor probes. J. Med.
Chem. 2001, 44, 2259−2269.
(30) Zheng, Y.; Akgun, E.; Harikumar, K. G.; Hopson, J.; Powers, M.
D.; Lunzer, M. M.; Miller, L. J.; Portoghese, P. S. Induced association
of mu opioid (MOP) and type 2 cholecystokinin (CCK2) receptors by
novel bivalent ligands. J. Med. Chem. 2009, 52, 247−258.
(31) Zhang, Y.; Gilliam, A.; Maitra, R.; Damaj, M. I.; Tajuba, J. M.;
Seltzman, H. H.; Thomas, B. F. Synthesis and biological evaluation of
bivalent ligands for the cannabinoid 1 receptor. J. Med. Chem. 2010,
53, 7048−7060.
(32) Koberstein, R.; Aissaoui, H.; Bur, D.; Clozel, M.; Fischli, W.;
Jenck, F.; Mueller, C.; Nayler, O.; Sifferlen, T.; Treiber, A.; Weller, T.
Tetrahydroisoquinolines as orexin receptor antagonists: strategies for
lead optimization by solution-phase chemistry. Chimia 2003, 57, 270−
275.
(33) Perrey, D. A.; German, N. A.; Gilmour, B. P.; Li, J. X.; Harris, D.
L.; Thomas, B. F.; Zhang, Y. Substituted tetrahydroisoquinolines as
selective antagonists for the orexin 1 receptor. J. Med. Chem. 2013, 56,
6901−6916.
(34) Perrey, D. A.; Gilmour, B. P.; Runyon, S. P.; Thomas, B. F.;
Zhang, Y. Diaryl urea analogues of SB-334867 as orexin-1 receptor
antagonists. Bioorg. Med. Chem. Lett. 2011, 21, 2980−2985.
(35) Malherbe, P.; Borroni, E.; Pinard, E.; Wettstein, J. G.; Knoflach,
F. Biochemical and electrophysiological characterization of almorexant,
a dual orexin 1 receptor (OX1)/orexin 2 receptor (OX2) antagonist:
comparison with selective OX1 and OX2 antagonists. Mol. Pharmacol.
2009, 76, 618−631.
(36) Tanaka, T.; Nomura, W.; Narumi, T.; Masuda, A.; Tamamura,
H. Bivalent ligands of CXCR4 with rigid linkers for elucidation of the
dimerization state in cells. J. Am. Chem. Soc. 2010, 132, 15899−15901.
(37) Shonberg, J.; Scammells, P. J.; Capuano, B. Design strategies for
bivalent ligands targeting GPCRs. ChemMedChem 2011, 6, 963−974.
(19) Guo, W.; Shi, L.; Javitch, J. A. The fourth transmembrane
segment forms the interface of the dopamine D2 receptor homodimer.
J. Biol. Chem. 2003, 278, 4385−4388.
(20) Herrick-Davis, K. Functional significance of serotonin receptor
dimerization. Exp. Brain Res. 2013, 230, 375−386.
(21) Ellis, J.; Pediani, J. D.; Canals, M.; Milasta, S.; Milligan, G.
Orexin-1 receptor-cannabinoid CB1 receptor heterodimerization
results in both ligand-dependent and -independent coordinated
alterations of receptor localization and function. J. Biol. Chem. 2006,
281, 38812−38824.
(22) Hilairet, S.; Bouaboula, M.; Carriere, D.; Le Fur, G.; Casellas, P.
Hypersensitization of the orexin 1 receptor by the CB1 receptor:
evidence for cross-talk blocked by the specific CB1 antagonist,
SR141716. J. Biol. Chem. 2003, 278, 23731−23737.
E
dx.doi.org/10.1021/ml4004759 | ACS Med. Chem. Lett. XXXX, XXX, XXX−XXX